Models:

- LPD-30
- LPD-100
- LPD-200
Copyright

© 2010 Maguire Products Inc.

The information contained within this manual including any translations thereof, is the property of Maguire Products Inc. and may not be reproduced, or transmitted in any form or by any means without the express written consent of Maguire Products Inc.

To every person concerned with use and maintenance of the Maguire LPD® it is recommended to read thoroughly these operating instructions. Maguire Products Inc. accepts no responsibility or liability for damage or malfunction of the equipment arising from non-observance of these operating instructions.

To avoid errors and to ensure trouble-free operation, it is essential that these operating instructions are read and understood by all personnel who are to use the equipment.

Should you have problems or difficulties with the equipment, please contact Maguire Products Inc. or your local Maguire distributor.

These operating instructions only apply to the equipment described within this manual.

Manufacturer’s Contact Information

Maguire Products Inc.
11 Crozerville Road
Aston, PA. 19014

Phone: 610.459.4300
Fax: 610.459.2700

Website: http://www.maguire.com

Email: info@maguire.com
Accuracy of this Manual

We make every effort to keep this manual as correct and current as possible. However, technology and product changes may occur more rapidly than the reprinting of this manual. Generally, modifications made to the dryer design or to the operation of the software may not be reflected in the manual for several months. The date at the footer of this manual will indicate approximately how current this manual is. Likewise, your Dryer may have been produced at an earlier time and the information in this manual may not accurately describe your Dryer since this manual is written for the current line of Dryers in production (as of the date in the footer). We always reserve the right to make these changes without notice, and we do not guarantee the manual to be entirely accurate. If you question any information in this manual, or find errors, please let us know so that we may make the required corrections or provide you with accurate information. Additionally we will gladly provide you with an updated copy of any manuals you need at any time. We welcome comments and suggestions on ways we can improve this manual.

For additional information, or to download the latest copy of this manual or any other Maguire manual, please visit our website or contact us directly.

On the Web at: www.Maguire.com

Maguire Products Inc.
Main Headquarters
11 Crozerville Road
Aston, PA 19014
Tel: 610.459.4300
Fax: 610.459.2700
Email: info@maguire.com

Maguire Europe
Tame Park
Tamworth
Staffordshire
B775DY
UK
Tel: +44 1827 265 850
Fax: +44 1827 265 855
Email: info@maguire-europe.com

Maguire Products Asia PTE LTD
Main Office
No. 15 Changi North Street 1
#01-15, I-Lofts
Singapore 498765
Tel: 65 6848-7117
Fax: 65 6542-8577
magasia@maguire-products.com.sg

Maguire Italy
Via Zancanaro 40
35020 Vigorovea (PD)
Tel: +39 049 970 54 29
Fax: +39 049 971 18 38
Email: info@maguire-italia.it

Please e-mail comments and suggestions to: support@maguire.com
Table of Contents

PART 1 GETTING STARTED, READ THIS PAGE 7
 1.1 5 Year Warranty and Disclaimers 8
 1.2 SAFETY Warnings ... 9

PART 2 INSTALLATION .. 10
 2.1 Transport and Setup ... 10
 2.2 Dryer Installation ... 11
 2.2.1 Hopper Installation Series 30 11
 2.2.2 Hopper Installation Series 100 / 200 12
 2.2.3 Canister Installation Series 200 13
 2.2.4 Compressed Air Connection 13
 2.2.5 Electrical Connection ... 14
 2.3 Installing Maguire Receiver on Process Machine 15
 2.4 Using Your Own Receiver / Loader 16
 2.5 Using the Maguire Receiver to load the Dryer 17
 2.6 Dual Convey Option .. 19

PART 3 OPERATION ... 23
 3.1 Standard Operation .. 23
 3.2 Recommended Cycle Times ... 24
 3.3 Standard Operating Sequence 25
 3.4 Operating Features/Options 26
 3.4.1 Convey-Only Mode .. 27
 3.5 Changing Color “On The Fly” 28
 3.6 Controls Description .. 29
 3.6.1 Controller & Operator Station 29
 3.6.2 Keypad .. 34
 3.6.3 Star Functions .. 37
 3.6.4 Parameters ... 50
 3.6.5 Changing / Saving Parameters 60
PART 4 MAINTENANCE AND SERVICE ... 63
 4.1 Clean / Replace Air Filter ... 63
 4.2 Cleaning the Vacuum Takeoff Assembly (VTA) 64
 4.3 Canister Removal / Cleaning .. 66
 4.4 Fill Hopper and Fill Valve Cleaning 69
 4.5 Clean / Inspect the silicone disk seals 71
 4.6 Drain and purge Air Filter / Regulator 71
 4.7 Adjustments ... 72
 4.8 Check Out Procedure ... 75
 4.9 Temperature and Pressure Verification 76
 4.10 Control Panel Removal ... 77
 4.11 Diagnostic / Test Mode .. 77
 4.12 Control Inputs and outputs 78
 4.13 Decommissioning and Disposal 80

PART 5 TROUBLESHOOTING / SOFTWARE 81
 5.1 Alarms – Cause and Solution 81
 5.2 Possible Service Issues ... 84
 5.2.1 Loss of Vacuum .. 84
 5.2.2 Damaged Vacuum Disks 84
 5.2.3 Heater Safety Switches Tripped 85
 5.2.4 Filter Clogged .. 85
 5.3 Print Outputs ... 86
 5.4 Material Not Drying Correctly 87
 5.5 Dryer Software – Backup, Restore, Factory Reset 88

PART 6 General Information .. 89
 6.1 - Models, Model Identification 89
 6.2 - LPD Nomenclature / Order Code 90
 6.3 - Features ... 91
 6.4 - Our Design Philosophy ... 92
 6.5 - Theory of Operation / Performance 93
 6.6 - Warranty .. 94
 6.7 – LPD wiring Diagram & Supplements 95
 6.8 - Exploded View and Parts List 109
 6.9 - Pneumatic Diagrams .. 121
 6.10 - Technical Support / Contact Information 127
1 - Getting Started – READ THIS PAGE

PLEASE READ THIS PAGE

You don't have to read the entire manual....

BUT...

PLEASE READ THE NEXT TEN PAGES.

It will take about 10 minutes.

THESE PAGES COVER:

<table>
<thead>
<tr>
<th>Warranty and Disclaimers:</th>
<th>What we Warranty and what we cannot promise.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAFETY Warnings:</td>
<td>Safety warnings.</td>
</tr>
<tr>
<td>INSTALLATION:</td>
<td>Assembly and setup.</td>
</tr>
<tr>
<td>OPERATION:</td>
<td>What buttons to push.</td>
</tr>
</tbody>
</table>

MAGUIRE "LPD" Dryers are protected by U.S. patent 6,154,980. Additional U.S. and International patents are pending.

GETTING STARTED:

PROCEED TO: WARRANTY AND DISCLAIMERS NEXT PAGE
1.1 - Warranty – Exclusive 5-Year

MAGUIRE PRODUCTS offers **THE MOST COMPREHENSIVE WARRANTY** in the plastics auxiliary equipment industry. We warrant each MAGUIRE LPD DRYER manufactured by us to be free from defects in material and workmanship under normal use and service; excluding only those items listed below as ‘excluded items’; our obligation under this warranty being limited to making good at our factory any Dryer which shall, within FIVE (5) YEARS after delivery to the original purchaser, be RETURNED intact to us, transportation charges PREPAID, and which our examination shall disclose to our satisfaction to have been thus defective; this warranty being expressly in lieu of all other warranties expressed or implied and of all other obligations or liabilities on our part, and MAGUIRE PRODUCTS neither assumes nor authorizes any other persons to assume for it any other liability in connection with the sale of its Dryers.

This warranty shall not apply to equipment repaired or altered outside MAGUIRE PRODUCTS INC. factory, unless such repair or alteration was, in our judgment, not responsible for the failure; nor which has been subject to misuse, negligence or accident, incorrect wiring by others, or installation or use not in accord with instructions furnished by Maguire Products, Inc.

Our liability under this warranty will extend only to equipment that is returned to our factory in Aston, Pennsylvania, PREPAID.

Please note that we always strive to satisfy our customers in whatever manner is deemed most expedient to overcome any problems they may have in connection with our equipment.

Excluded Items:

The ability of the canisters to hold vacuum will be compromised if the vacuum seal edge is damaged from mishandling. We do not warranty canisters damaged from improper handling. We do, however, warranty the seals.

Disclaimers – Production of faulty product

This dryer is of a new design. We have had excellent results in all tests performed to date, but we have not tested every material available to the plastics industry. Materials vary widely throughout the industry. We have not anticipated all possible materials, processing conditions, and requirements. We are not certain that our equipment will perform properly in all instances. You must observe and verify the performance level of this equipment in your plant as part of your overall manufacturing process. You must verify to your own satisfaction that this level of performance meets your requirements. We can not be responsible for losses due to product not dried correctly, even when due to equipment malfunction or design incorrect for your requirements; and/or any consequential losses due to our equipment not drying material to your requirements.

We will only be responsible to correct, repair, replace, or accept return for full refund, our equipment if it fails to perform as designed, or we have inadvertently misrepresented our equipment for your application. If for any reason this disclaimer is not acceptable, we will accept return of the equipment for full refund, including freight costs both ways.

GETTING STARTED:
PROCEED TO: SAFETY WARNINGS

Edition: November 5, 2010
1.2 – SAFETY WARNINGS

HOT SURFACES:

As with all dryers, there are HOT SURFACES to avoid. Temperatures can reach 250F (120C), or 350F, (180C) on high temperature models.

All heated surfaces are contained within the external enclosure. When the door is opened you can access and touch hot surfaces. Typically these surfaces are not at dangerous temperatures, however all hot surfaces should be avoided.

Warning Label indicate HOT SURFACES
USE CAUTION when removing and installing canisters.
USE GLOVES.
DO NOT REACH into the dryer enclosure.

INDEXING OF THE MATERIAL CANISTERS:

At the end of each cycle canisters automatically index.

The forces that cause rotation are light. However, the inertia of already moving canisters might cause injury. Additionally the disks above and below each canister close automatically and present a pinch point. For these reasons an interlock on the access door prevents all operations while the door is open.

DO NOT DEFEAT this interlock.

DO NOT try to index the canisters by hand, against the force of the positioning air cylinder. They will swing back rapidly when released.

If you disconnect the air supply and then rotate the canisters by hand, reconnecting the air will cause the canisters to swing rapidly back to their start position.

When connecting the air supply KEEP hands CLEAR. Have the DOOR CLOSED.

DOOR SAFETY INTERLOCK:

There is a safety interlock switch on the door. If you open the door, all operations will stop. After closing the door, you will need to press START to restart the dryer. Accumulated cycle time will not be lost.

RISK OF SHOCK:

Disconnect power supply before servicing the Dryer.

GETTING STARTED: PROCEED TO: INSTALLATION - NEXT PAGE
2 - Installation

2.1 – Transport, Unpacking and Setup
To help you identify your Dryer see: LPD Nomenclature / Order Code on page 90.

Unpacking - Removing from Carton
Cut sides and top flaps, unscrew screws and washers from the sides at the skid. There are 6 screw locations. Remove carton, remove cardboard tray at the top of the carton. On Series 30 models, cut and remove plastic wire ties from handles inside the dryer attached to the black frame member. On the Series 100 and 200 models, remove the packing material from around the canisters and brackets.

Return Shipping Information
Save the carton and cardboard if at all possible, reuse for return to factory. Use strong plastic wire ties to affix the canister from turning on the Series 30 units. On the Series 100 and 200 models, it is advisable to use packing material around the canister support brackets and ship the canisters on a separate skid or carton.

Lifting
DANGER OF INJURY!
If the weight is unevenly distributed, the Dryer may tip and injure people when it is lifted.

Lift the Dryer with a fork truck or suitable equipment. Weights of Dryer models range from 425 pounds (193 Kg) to 900 pounds (408 Kg). Lift points are between the wheels, oriented from front or rear. The forks must be closest to the inside of the wheels as possible for stability.

Remove Skid
To remove the skid, unbolt the two bolts that secure the dryer to the skid.

The bolts are located at the bottom of the Dryer and go through the wooden skid. These bolts can be loosened while the Dryer and the skid are on the ground. Reverse procedure to install dryer on the skid.
2.2 – Dryer Installation

2.2.1 - Hopper Installation on the Series 30 model Dryers

Loosen thumbscrews and slide plates away from opening.

Insert hopper into opening so that air supply hoses are facing the same side of the Dryer as the fitting they will attach to.

Slide both lock plates towards hopper and over hopper flange. Tighten thumbscrews.

Attach hopper air supply quick connect fittings.
2.2.2 - Hopper Installation on the Series 100, 200, model Dryers

Locate and remove the two ½” SHCS fasteners and washers on the fill hopper intake plate (on top of the Dryer) using 3/8” Allen wrench.

Note: Do not remove the two recessed button head fasteners.

Place the hopper on the dryer intake and line up the two boltholes in the hopper with the boltholes in the fill hopper intake plate.

For easy accessibility orientate the hopper so that the manual slide gate handle and hopper access door are accessible from the side or rear of the Dryer.

Note: LPD-200 Series is equipped with a Cleanout Chute. The LPD-200 hopper is elevated 2 7/8 inches higher than the LPD-100 hopper). For easy cleanout of the LPD-200 hopper, orient the hopper so the manual slide gate handle is above the chute (right side of dryer).

Re-install the two ½” SHCS fasteners and washers then firmly tighten by hand using 3/8” Allen wrench.
2.2.3 – Installing Canisters on Series 200 model Dryers

With 200 Series Dryers, the canisters are packaged separate from the Dryer itself. To install the Canisters into the Dryer, follow these steps.

Do not damage the edge of the canister. Always rest the canisters on a rubber mat or thick cardboard and take care not to damage the edge of the canisters.

After unpacking the canisters, rest the canisters on a rubber mat to protect the canister edge. Open the Dryer door and rotate the “Canister Hanger Assembly” around to an empty station. Grip the two handles of the canister firmly and lift the canister up into the Dryer, and hang the upper supports into the “Canister Hanger Assembly”, then swing the lower supports back to the lower latches.

Hook the canister latch on each side of the canister by pushing the canister back to the latch, securing the canister.

Note: Each canister hangs in one of three positions in the “Canister Hanger Assembly”. These three Positions are labeled 1, 2 and 3. The number identifies the canister position in the assembly.

2.2.4 - Compressed Air Connection

Connect an air supply to the air regulator’s IN port using a male ¼” NPT fitting.

An operating air pressure of 80 psi (5.5 bar) while the vacuum generator is running is required for proper operation of the Dryer.

Note: The Vacuum Generator runs for the first few minutes of every cycle.

If your air supply has oil in it add an oil separator filter. Oil in the air will combine with dust drawn from the canisters forming a paste inside the vacuum generator. It will stop working and require cleaning.

Observe the air pressure gauge to be sure the pressure maintains 80 psi (5.5 bar) while the vacuum generator is running or activate the blow gun releasing air as you check and adjust the regulator. If pressure drops below 80 psi, adjust the regulator. If the pressure cannot maintain 80 psi (5.5 bar) while the vacuum generator is running, then the air supply line is not adequate.

Do not supply Dryer with a lubricated air supply. Damage to Dryer may result. Use only a clean, dry, oil-free air supply.
2.2.5 - Electrical Connection
To help you identify your Dryer see: LPD Nomenclature / Order Code on page 90.

RISK OF INJURY! Only qualified technicians should make electrical connections.

Connect power to a properly fused disconnect. Voltage and amp ratings are specified on the serial number plate.

THREE PHASE UNITS are:
- 60 cycle 230 volts
- 60 cycle 480 volts
- or 50 cycle 400 volts

See Wiring Diagrams on page 95 for wiring details.

Confirm Correct Blower Rotation

On THREE PHASE units CONFIRM CORRECT BLOWER ROTATION by following these instructions:

Turn power on using main power switch.

Press: • Display will say: ENTER FIVE DIGIT PASSWORD _ _ _ _ _

Press: 22222 Display will say: TEMP=63°F v=0in

MODE=PROGRAM CAN=2

Press: BLOWER

Press: CONVEY

Place hand over the CONVEY VACUUM CONNECTION port located on the right side of the Dryer. If there is VACUUM, that indicates the correct rotation.

If air is blowing OUT, this is NOT correct. Reverse any two power leads (not ground) to correct rotation.

Press: EXIT Display will say: TEMP=63°F v=0in

MODE=AUTO CAN=2
2.3 – Installing the Maguire Receiver on a process machine

If you intend to use the Maguire Receiver to load your process machine, follow these instructions.

Attach the Maguire Receiver to your process machine using the four bolt holes located at the base of the Maguire Receiver.

At the lower, right side of the Dryer are two ports. The “Dry Resin Takeoff” port and the “Convey Vacuum Connection” port. Using a hose clamp, attach one end of the 2-inch vacuum line to the “Convey Vacuum Connection” port.

Attach the other end of the 2-inch vacuum line to the port located on top of the Maguire Receiver (vacuum), again using a hose clamp. Orient the top port to face the right side of the Dryer by loosening the two clamps and rotating it to face the right side if the Dryer for better access to the “Convey Vacuum Connection” port.

Next, attach the material convey line to the Maguire Receiver’s lower port (material convey) using a hose clamp.

Next attach the other end of your Material Convey line to the “Dry Resin Takeoff” port on the Dryer.

Attach one end of the Convey Sensor Cable to the cable port located at the base of the Maguire Receiver.
Attach the other end of the Convey Sensor Cable to the Convey Sensor port located on the left side of the Dryer’s controller.

DO NOT wire tie the SENSOR cable to the MATERIAL hose. This will induce static spikes into the processor. Keep them separated.

2.4 – Using Your Own Receiver / Loading System on a process machine

If you have installed our receiver: **PROCEED TO: OPERATION**

If you use your own Receiver / Loading System:

Attach your Material Convey line to the “Dry Resin Takeoff” port on the Dryer.
2.5 - Using the Maguire Receiver to load the Dryer

If you have your own receiver/loader: Proceed to the next section: OPERATION

If you intend to use the Maguire Receiver to load the Dryer, follow these instructions.

Configuring the Dryer Software to use Maguire Receiver to load the Dryer

If you want to load the Dryer using a Maguire Receiver see #39 in the Star Functions section, page 42 and select the Convey Mode: “CONVEY TO DRYER”.

Along with the Maguire Dryer, you will have been provided a Hopper and a Hopper Lid, which includes a Hopper Lid Blank. The Hopper Lid Blank will need to have the necessary mounting holes drilled into it to mount the Maguire Receiver. Depending on the Maguire Receiver you have, you will use one of two patterns to drill out the necessary holes in the Hopper Lid Blank. Note: The Hopper Lid Blank can be supplied pre-drilled if requested. Patterns are for ADR-1 or ADR-4 and are located in this manual on page 119.

First remove the two retaining screws from the Hopper Lid Blank, then using the appropriate pattern, mark and drill the holes in the Hopper Lid Blank. Then re-attach the Hopper Lid Blank to the Hopper Lid.

Attach the Maguire Receiver to the Hopper Lid before installing the Hopper Lid onto the Hopper. Using the 4 bolt holes at the base of the Receiver, install four ¼ inch bolts and locknuts. See picture to the right.

After the Maguire Receiver has been attached to the Hopper Lid, place the Hopper Lid on top of the Hopper. Be sure to align the existing screw holes in the Hopper Lid with the screw holes in the hopper. Secure the Hopper Lid to the Hopper by installing 2 screws into the screw holes. See picture to the right.
At the lower, right side of the Dryer are two ports. The “Dry Resin Takeoff” port and the “Convey Vacuum Connection” port. Using a hose clamp, attach one end of the 2-inch vacuum line to the “Convey Vacuum Connection” port.

Attach the other end of the 2-inch vacuum line to the port located on top of the Maguire Receiver (vacuum), again using a hose clamp. Orient the top port to face the right side of the Dryer by loosening the two clamps and rotating it to face the right side if the Dryer for better access to the “Convey Vacuum Connection” port.

Next, attach the material convey line to the Maguire Receiver’s lower port (material convey) using a hose clamp. The other end of the material convey line will attach to your material source such as a Material Pick-Up Lances as pictured to the right.

Attach one end of the Convey Sensor Cable to the cable port located at the base of the Maguire Receiver.

Attach the other end of the Convey Sensor Cable to the Convey Sensor port located on the left side of the Dryer’s controller.

DO NOT wire tie the SENSOR cable to the MATERIAL hose. This will induce static spikes into the processor. Keep them separated.
2.6 - Dual Convey Option

The Dual Convey Option allows for one Dryer to supply material to two processes using two Maguire Receivers. Using Dual convey requires the purchase of the Dual Convey Kit, which includes:

- Dual Convey Receiver Selector Control
- Dual Convey Solenoid
- Dual Convey Shifting Valve
- Y Resin Takeoff Pipe
- Nylon Air line
- NPT ¼” T fitting with Nylon Quick Connect

The following instructions describe the installation of the Dual Convey Option on LPD 100 and LPD 200 Series Dryers.

1. Open the front access door of the Dryer, loosen the hose clamp that secures the short pipe labeled Dry Resin Takeoff Pipe (top pipe). Remove the short stock pipe as shown above.

2. Insert the “Y Resin Takeoff Pipe” into the short connector hose and into the Vacuum takeoff Assembly (VTA). Fitment may be tight, use a rubber mallet or block of wood to gently tap the new “Y Resin Takeoff Pipe” into the Vacuum takeoff Assembly. The flange of the Y Resin takeoff Pipe should come to the end of the pipe within the VTA. **CAUTION:** Do Not strike a steel hammer directly on the Y Pipe as this may damage the pipe.
3. Install the “Dual Convey Receiver Selector Control Box” below the air regulator. You will have to drill four holes in the panel of the Dryer.

Caution: Remove the rear panel of the dryer and visually inspect to ensure clearance before drilling any holes in the cabinet wall.

If you have been supplied a hole pattern, you may use the pattern, otherwise, center punch the holes using the holes in the control box. **Location of the upper left hole** should be approximately: **On 200 Series Dryers** - 2 inch in from the left edge of the panel and 41 inches up from the bottom of the panel. **On 100 Series Dryers** - 2 inch in from the left edge of the panel and 37 inches up from the bottom of the panel.

4. Using the supplied pipe clamp, secure the “Dual Convey Shifting Valve” to the Convey Vacuum Connection pipe located below the “Y” pipe (installed previously).

5. Remove the blowgun air hose from the ¼ inch NPT “T” fitting and install the new “T” fitting as shown above. Re-install the blowgun facing out and the Nylon Quick Connect facing down. Use Teflon thread tape to seal the threads. Connect a short length of nylon airline from the Nylon Quick Connect on the air supply down to the rear Nylon Quick Connect on the “Dual Convey Receiver Selector Control Box”. See image above and image with Step 6.
6. Route a nylon airline from the top nylon quick disconnect on the “Dual Convey Receiver Selector Control Box” through the Dryer to the opposite side to the “Dual Convey Shifting Valve” as described below:

 a. Insert on end of a long nylon airline in the front nylon quick disconnect. This line will be run though the Dryer. See image to the right.

 b. Route the nylon airline up to the louver located to the left of the air manifold and run the line into the louver.

 c. With the back, upper panel removed, route the airline along with the existing airlines and wires. Run the airline through the existing wire loops to hold the airline in place.

 d. Route the airline down the inside corner, through the access hole. Route the airline inside the Dryer towards the front and out the lower louver.

 e. Route the airline out bottom louver to the “Dual Convey Shifting Valve” as pictured to the right.

 f. Connect the nylon airline to the nylon quick disconnect on the “Dual Convey Shifting Valve”. See image to the right.
7. Located on the side of the “Dual Convey Receiver Selector Control Box” is a Convey Sensor cable. Connect that cable to the Convey Sensor port located on the left side of the Dryer’s controller.

8. Located on the front of the “Dual Convey Receiver Selector Control Box” is 2 ports for 2 Convey Sensor cables. A Convey Sensor cable will run to each Maguire Receiver on your process.

9. Run a material convey line from each of the two outlets of the Y tube at the Dry Resin takeoff port to each of the two Maguire Receivers on the process machines.

10. Run a Vacuum Convey Line from each of the Maguire Receivers on the process machines to the appropriate Receiver Vacuum port on the Dual Convey Shifting Valve. The assigned number (Receiver, Receiver 2) depends on how you want to refer to and assign your receivers. **Note:** Be sure that you run the BOTH the Convey Sensor cable (for Receiver 1 and Receiver 2) and the Vacuum Convey Lines to the same Receiver.

Usage: To supply material to a Maguire Receiver (Receiver 1, Receiver 2), turn the Receiver Switch on the “Dual Convey Receiver Selector Control Box” in the ON position. The “Dual Convey Receiver Selector Control Box” will automatically supply material on demand to the Maguire Receivers.
3 - Operation

3.1 - Standard Operation

For a detailed description of Dryer controls see “Controls Description” on page 29. To help you identify your Dryer see: LPD Nomenclature / Order Code on page 90.

1. Fill the hopper on top of the dryer with material.

2. Set the TEMPERATURE - (TEMP thumbwheel switches)

 USE THE SAME temperature setting recommended by the resin manufacturer for conventional desiccant dryers.

 DO NOT exceed the manufacturers recommended drying temperature unless you are sure the material will not soften and stick together.

 Standard heat models can be set as high as 250 f (120c).
 High heat models can be set to 300f (150c).

3. Set the CYCLE TIME - (CYCLE thumbwheel switches)

 See RECOMMENDED CYCLE TIMES, next page.

 These are suggested starting points only. Run moisture tests to determine correct cycle times, or submit your material to us for determination. See form on page 87 for material testing.

4. OPERATOR STATION - Left Side

 On the POWER box:

 a. Turn MAIN POWER on. (RED switch)

 On power up, the canisters will index to a starting position based on the position when last shut down.

 On the CONTROLLER:

 b. Turn MODE switch to AUTO.

 c. Press CYCLE START.

 d. Two timed cycles must be completed before material is available to be conveyed. When material is available, turn the CONVEY switch to the ON position (if applicable).

 For a more indepth explanation of the operating sequence, please see Standard Operating Sequence on page 25.

 If you ever run material that does not require drying, set both Temperature and Cycle time to 000. This keeps the heater off and allows indexing as required.
3.2 – Recommended Cycle Times

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>FINAL MOISTURE % *</th>
<th>CYCLE TIME (MINUTES)**</th>
<th>DRYING TEMPERATURE***</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>0.10</td>
<td>20 - 25</td>
<td>80 - 85</td>
</tr>
<tr>
<td>ABS/PC</td>
<td>0.02</td>
<td>25 - 30</td>
<td>100</td>
</tr>
<tr>
<td>LCP</td>
<td>0.02</td>
<td>20 - 50</td>
<td>150</td>
</tr>
<tr>
<td>PA</td>
<td>0.20 - 0.10</td>
<td>20 - 30</td>
<td>80 - 85</td>
</tr>
<tr>
<td>PBT</td>
<td>0.02</td>
<td>20 - 25</td>
<td>120</td>
</tr>
<tr>
<td>PC</td>
<td>0.02</td>
<td>20 - 25</td>
<td>125</td>
</tr>
<tr>
<td>PC/PBT</td>
<td>0.02</td>
<td>20 - 25</td>
<td>125</td>
</tr>
<tr>
<td>PEEK</td>
<td>0.20 - 0.10</td>
<td>25 - 30</td>
<td>150</td>
</tr>
<tr>
<td>PEI</td>
<td>0.02</td>
<td>30 - 40</td>
<td>150</td>
</tr>
<tr>
<td>PES</td>
<td>0.05 - 0.02</td>
<td>25 - 30</td>
<td>150</td>
</tr>
<tr>
<td>PET (Molding Grade)</td>
<td>0.010</td>
<td>30 - 35</td>
<td>150</td>
</tr>
<tr>
<td>PET (Preform, Extrusion)</td>
<td>0.005</td>
<td>30 - 35</td>
<td>150</td>
</tr>
<tr>
<td>PMMA (Acrylic)</td>
<td>0.02 - 0.04</td>
<td>30</td>
<td>85</td>
</tr>
<tr>
<td>POM (Acetal)</td>
<td>0.20 - 0.10</td>
<td>25</td>
<td>80 - 110</td>
</tr>
<tr>
<td>PPO</td>
<td>0.02</td>
<td>25</td>
<td>100 - 120</td>
</tr>
<tr>
<td>PPS</td>
<td>0.02</td>
<td>25</td>
<td>150</td>
</tr>
<tr>
<td>PUR</td>
<td>0.02</td>
<td>25</td>
<td>125 - 140</td>
</tr>
<tr>
<td>PSU</td>
<td>0.02</td>
<td>25 - 30</td>
<td>150</td>
</tr>
<tr>
<td>SAN</td>
<td>0.20 - 0.10</td>
<td>20 - 40</td>
<td>80</td>
</tr>
</tbody>
</table>

* Final moisture content as recommended by the raw material manufacturer.

** Recommended cycle time is based on average initial moisture content. For high initial moisture content cycle time should be extended 5 minutes. When in doubt contact Maguire Service.

*** Drying temperature as recommended by the material manufacturer.

Drying is accomplished when all material reaches the proper temperature, and is then placed under sufficient vacuum for a sufficient period of time.

Measurement of moisture content of material, both prior to and after drying, is accomplished by using a moisture analyzer such as one manufactured by Arizona Instruments.

If you are not obtaining the results you want or if you would like us to test your material to determine the optimal drying cycle time, please see form on page 87 for material testing.
3.3 – Standard Operating Sequence

This section will help you understand what the dryer is doing as it runs.

Inside the dryer enclosure are three identical material canisters, which rotate through 3 stations:

- Fill and Heat Station (right rear)
- Vacuum Station (left rear)
- Dispense Station (front)

Each canister hangs in one of three positions in the “Canister Hanger Assembly”. These three positions are labeled 1, 2 and 3. The number identifies the canisters position in the assembly.

With the material in the hopper above the Fill and Heat station, press CYCLE START to begin the sequence.

On power up, the canisters will index to a starting position based on the position when last shut down.

"Operation" means the following actions occur:

1. The disks above and below each canister close.
2. The Blower turns on.
3. The vacuum generator turns on.
4. The air cylinder over the Dispense Station extends to open the canister dispense valve located inside the canister at the bottom, to deliver material to the process. If the bottom sensor was not uncovered at the time of indexing, the fill valve will delay opening until the sensor becomes uncovered.
5. The canister fill valve over the Fill and Heat Station opens, filling the canister. A sensor located under the Fill and Heat Station confirms the canister is in place before the fill valve will open.
6. The heater turns on.
7. With the opening of the Fill valve, the canister in the Fill and Heat Station begins to fill. Hot air enters the canister to heat the material as it fills. The heating process continues for the cycle time set on the Cycle Time thumbwheel. At the same time, a vacuum is pulled on the canister in the Vacuum Station.
8. After the cycle time elapses, the cycle ends and the canisters index counterclockwise to the next station. The heated material that was in the Fill and Heat Station has now moved to the Vacuum Station. Here the vacuum dries the full charge of heated material.

The CYCLE TIMER only counts time when the heated air temperature is within 20 degrees of target, and the vacuum has reached 25 inches. Therefore, the first minute or so of each cycle does not count toward cycle time.
9. After the cycle time elapses, the cycle ends and the canisters index counterclockwise again to the next station. The dried material that was in the Vacuum Station has now moved to the Dispense Station. Two cycles have passed and the dried material is ready for production.

From now on, indexing occurs at the end of each cycle time. This is the standard mode, "advance on time". If you have selected the "advance when empty" option, then indexing occurs only when the level sensor below the Dispense Station indicates the dispensing canister is empty.

If you are using "advance when empty" option you have the ability to set a short fill time. If the time to use the material in the canister is more than double the minimum cycle time set on the cycle time thumbwheel, we suggest you decrease the Fill time so that the canister does not hold so much material. Excessively long cycle times may allow dried material to begin to re-absorb moisture.

3.4 – Operating Features/Options

Auto Start *22 - Allows for entry of a date/time to automatically start the dryer heating and vacuum cycle. See Star Functions on page 37 for more information.

Auto Stop *24 - Allows for entry of a date/time to automatically stop the dryer heating and vacuum cycle. See Star Functions on page 37 for more information.

Material Alarm *33 - Alarm to alert an operator that dry material is ready to be conveyed after a cold start of the dryer. See Star Functions on page 37 for more information.

Index Complete Alarm *34 – Alarm after every index and continue running. This is intended for lab environments where someone has to manually empty the canisters after each index. See Star Functions on page 37 for more information.

Cycle Time Alarm *36 – Alarm to alert an operator that material has run out before end of cycle.

Convey Options *39 – Material convey options are "Standard Convey", "Convey and Purge" and "Convey to Dryer". See Star Functions on page 37 for more information.

Convey Alarm *40 - After initial filling of the Maguire receiver, the dryer will alarm if the Maguire receiver conveying material to your process does not fill on the 3rd attempt. See Star Functions on page 37 for more information.

Advance Options Time/Empty *44 - "Advance on Time" will advance the canisters (index) when the cycle timer times out, even if canister is not empty. "Advance on Empty" will advance only after the canister is empty. See Star Functions on page 37 for more information.

Dispense Valve Options *52 - Options for dispensing the front canister. Choose between “Enabled”, “Disabled” and “Pulsed”. Enabled for normal operation, disable will not dispense, and pulsed will pulse the dispense valve on and off when dispensing. See Star Functions on page 37 for more information.

Fill Valve Options *53 - Options for filling the canister. Choose between “Enabled” and “Disabled”. Enabled for normal operation, disable will not fill the canister automatically. See Star Functions on page 37 for more information.

Hopper Fill Alarm *74 - When enabled, the Dryer alarms if the Hopper fails to fill within the time specified. See Star Functions on page 37 for more information.

Key Functions - See the Keypad description of functions on page 34 for more information.

Empty key - Manually opens the bottom valve at the “Dispense Station” to empty a canister.
Fill key - Manually opens the fill valve, above the “FILL and HEAT station”.
Convey Key – Manually shift hot air flow valves to convey material.
3.4.1 – Convey-Only Mode

In this convey-only mode, the LPD does not heat, pressurize, fill, or index. This mode will only convey material to a Maguire ADR (Maguire Dryer Receiver).

To use this mode:

Remove the material hose from the dryer and insert into a container of material. A material lance is recommended.

Set the temperature thumbwheel set to 000
Set the time thumbwheel to 999
Set the Convey Switch to ON.

Pressing the start button will activate this mode.

Press and hold the “Set Convey Time” button to set the convey time. When conveying starts, immediately press the "convey time" button and hold until the desired level in the receiver is reached; then release. This load time will be saved by the software.

Once started, the LPD will only process convey requests from the convey signal/sensor on the ADR.

Exit convey-only mode, press the STOP button and reset the thumbwheels.

Auto-start and auto-stop functions will work, as well as pausing the mode by opening the door (closing the door resumes where it left off).

If no convey signal is seen for 10 minutes the blower is turned off. The blower will be turned back on before starting the next convey request.
3.5 – Changing Colors “On The Fly” Using the Clean Mode

Canisters and surrounding parts may be hot. Use of gloves is recommended.

To CHANGE COLORS without stopping production:

PLAN AHEAD!

If your canisters are full, you have at least ONE hour of material in the pipe line. So, you must plan far enough ahead to allow time to consume this material. So....

ONE hour before the change is required:

1. Set the MODE switch to “CLEAN”. In this mode, canisters DO NOT INDEX automatically.

2. Shut off your feed system and clean the dryer hopper and the receiver or blender supplying material. Be sure to clear the fill valve area under the dryer hopper. The fill valve is accessible and removable by removing one bolt from the hopper base and rotating the hopper out of position.

Perform a full clean out and color change up to this point, the fill point above the canister. See section 4.13, Canister Removal / Cleaning on page 66 under the Maintenance and Service section.

In the CLEAN mode CANISTERS DO NOT INDEX at the end of the cycle. The ALARM sounds and the display says (CLEAN).

When the ALARM sounds:

1. Press "Alarm Silence" to preserve your sanity.
2. Remove, clean, and replace the canister; close door.
3. Press the INDEX button.
4. After Indexing occurs, begin the filling of the newly cleaned canister with the new color blend.

Repeat these 4 steps as each of the remaining canisters empty.

After the final canister is cleaned:

1. Clear the conveying line to the process machine.
2. Begin conveying the new color blend to the process.

In the CLEAN mode, canisters do not advance on the time out of the TIME cycle. Canisters always wait until the canisters are empty, sensor uncovered. If the time exceeds double the normal cycle time, the alarm will sound. Either silence, or press advance if you are concerned that material may be picking up moisture.
3.6 – Controls Description

3.6.1 – Controller & Operator Station

Controller - Right Side

- CYCLE START
- CYCLE STOP
- MODE
- INDEX
- SILENCE ALARM
- CONVEY: ON/OFF
- SET CONVEY TIME

CYCLE START
Press to START the cycle.
Lights when the unit is running automatically.

CYCLE STOP
Press to STOP the cycle.
Lights when the unit has been stopped by the operator or has stopped between cycles in the "clean out" mode.

MODE - AUTO / CLEAN
Select AUTO for normal automatic indexing of canisters.
Select CLEAN to PREVENT AUTOMATIC INDEXING.
This is for COLOR CHANGES. INDEXING will NOT occur automatically. Instead the ALARM will sound, and the operator knows to CLEAN OUT the empty canister for the next color.

With a CLEANED CANISTER in place, the door is closed and the INDEX button is pressed to restart the cycle.

NOTE
When in Clean Mode, the cycle will continue until the time set in *37 has elapsed. See *37 for more information. Star Functions begin on page 37.
INDEX

Press to MANUALLY ADVANCE the canisters (with Dryer stopped).

In the CLEAN mode, you must press the INDEX button to advance the canisters. The next cycle starts as soon as INDEXING is complete.

In the AUTO mode, the index button does not work unless you press CYCLE STOP first. INDEX then serves to manually advance the canisters. After INDEXING, press CYCLE START to start the next cycle.

When blinking in combination with the GREEN Cycle Start Button: Cycle has stopped in the "clean" mode, the operator must press the INDEX button to advance the canisters after cleaning.

SILENCE ALARM

This button silences the STROBE and BEEPER ALARMS, but does not remedy the cause of the alarm.

CONVEY: ON/OFF

Operates only if a Maguire vacuum receiver is connected to the Dryer controls. Turn ON to enable conveying of dried material to your process machine.

SET CONVEY TIME

Operates only if we provide a vacuum receiver connected to the dryer controls. Press and hold to set the convey time. When conveying starts, immediately press the "convey time" button and hold until the desired level in the receiver is reached; then release. This load time will be saved by the software. The minimum possible time, as well as initial default setting, is two seconds.
Controller – Front Panel

- **TEMPERATURE**
- **CYCLE TIME**
- **DISPLAY**
- **KEYPAD**
- **STROBE LIGHT**
- **BEEPER ALARMS**

TEMPERATURE Thumbwheel Setting
Up to 350f/180c degrees

CYCLE TIME Thumbwheel Setting
The time in minutes for one cycle. Cycle times will vary depending on type of material. See Recommended Cycle Times chart on page 24.

Material that does not require drying may still be allowed to pass through the system by setting both thumbwheels to 000. The heater and vacuum will not operate, but indexing will still occur.

DISPLAY Vacuum Fluorescent Display (VFD)
All visual information will be displayed on this display.

STROBE LIGHT and **BEEPER ALARMS**
The Strobe light flashes and the Beep sounds when any condition occurs requiring operator intervention.
MANUAL FILL

Press Fill to manually operate the fill valve, over the fill station canister. Useful if the canister is set for timed fill, and you need to add additional material to the canister. Works only when the dryer is running in AUTO Mode.

MANUAL CONVEY

Press CONVEY to force a convey cycle, when some additional conveying is required to keep up with the process. Works only when the dryer is running in AUTO Mode.

EMPTY KEY

Opens the bottom valve at the “DISPENSE station” to dispense the material in the canister above through the VTA chamber. Toggles Open / Close. Can be operated in Auto Mode while the door is open for cleanout.

KEYPAD

See next section for Keypad functions.

Controller – Left Side

- USB input / output
- ETHERNET input / output (future use)
- SERIAL input / output
- CONVEY LEVEL SENSOR (plug receptacle)
USB PORT

This is a USB port. A USB Drive plugged in here allows information to be ported directly to a USB Drive giving the benefit of a permanent digital record.

Three printouts are available:

1. A listing of the internal parameter table.
 (press *77 in the PROGRAM mode.)

2. A periodic printout of temperature, vacuum reading, and elapsed cycle time. There is a detailed explanation of this printout in the PRINTED OUTPUTS section of this manual.
 (press *54 in the PROGRAM mode, use "*" to set printer flag ON.)

3. A listing of the alarm log.
 (press *76 in the PROGRAM mode.)

See Print Outputs on page 86 for more information about the *54 printout. See Star Functions on page 37 for more information on *77, *76 and *54.

The USB port can also be used to update the controller’s software. For information about updating the controller software see Updating Controller Software and the Star function 93.

Notes about printing to a USB drive

When saving printout information to a USB drive, the USB drive must contain a folder named maguire and within the folder, a file labeled PRINTER.TXT must be present. It is this file, PRINTER.TXT that printout functions appended to. Also note that every time a print occurs to the file on the USB drive, the data is appended to the end of the file PRINTER.TXT and does not overwrite existing data within the file.

COMPUTER input / output

The computer port is a male DB9 serial port. This port can be used as an interface to upgrade the Dryer software.

CONVEY LEVEL SENSOR - plug receptacle

The level sensor from the material receiver plugs in here. This allows the dryer to control conveying of material to your process using the dryer’s blower and hot air for conveying.
3.6.2 - Keypad

Description of Functions

Four modes are available:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Mode</td>
<td>Automatic operation occurs ONLY in this mode. This mode is active when power is turned on.</td>
</tr>
<tr>
<td>Manual Mode</td>
<td>Allows operation of devices for testing. For MANUAL mode, press: * then (11111) or your own password.</td>
</tr>
<tr>
<td>Program Mode</td>
<td>Allows altering of operation logic. For PROGRAM mode, press: * then (22222) or your own password.</td>
</tr>
<tr>
<td>Advanced Mode</td>
<td>Allows altering of operation of advanced logic. Note: You should never need to access the Advanced Mode unless instructed to do so by a Maguire LPD Technician. For ADVANCED mode, press: * then (33333) or your own password.</td>
</tr>
</tbody>
</table>

In Manual, Program or Advanced modes, automatic operation cannot occur. You can enter these modes only when the dryer has been STOPPED by pressing the CYCLE STOP button.

To change passwords, see (45), (78) and (79), below.

The following keys operate in ALL modes:

Display Key - Used to toggle the display. See key for descriptions.

- **Display when idle:**
 - TEMP = 90c
 - V = 640mm
 - MODE = AUTO
 - CAN = 1

- **Display during operation:**
 - TEMP = 90c
 - V = 640mm
 - CYC = 0:00
 - CAN = 1

- **Press DISP to change to:**
 - TEMP = 90c
 - V = 640mm
 - CYC = 0:00
 - HT = 20%

- **Or:**
 - TEMP = 90c
 - V = 640mm
 - WED 12/05/2005
 - 12:15

Display Key:

- TEMP: temperature of air entering the canister: F or C.
- V: vacuum inside the canister: ins. or mm.
- CAN: Canister that is currently in the Dispense station. (1, 2, 3)
- CYC: accumulated time, this cycle: min:sec
- HT: percent of heater “on” time each second
Exit Key
Press to EXIT any and all sequences.

Star Key
Use for: Entering Manual or Program Mode password, entering into a star function or toggling individual star functions (on/off, enable/disable, etc).

Clear Key
Holding the "CE" key down while turning POWER ON performs a "CLEAR". See CLEAR ROUTINES section.

The following keys operate in MANUAL and PROGRAM modes:

Position 1 Key
Rotate the canister in “Position 1” around to the Dispense station.

Position 2 Key
Rotate the canister in “Position 2” around to the Dispense station.

Position 3 Key
Rotate the canister in “Position 3” around to the Dispense station.

Note: Each canister hangs in one of three positions in the “Canister Hanger Assembly”. These three Positions are labeled 1, 2 and 3. The number identifies the canisters position in the assembly.
Lock Key
Lock the canisters in position. Toggles Lock / Unlock

Seal Key
Close all Disks. Toggles Seal On / Off

Fill Key
Open the fill valve, above the “FILL and HEAT station”. Toggles Open / Close
Also works while Dryer is running.

Empty Key
Opens the bottom valve at the “DISPENSE station” to dispense the material in the canister above through the VTA chamber. Toggles Open / Close
Can be operated in Auto Mode while the door is open for cleanout.

Convey Key
Shift hot air flow valves to convey material. Toggles convey On / Off
Also works while Dryer is running.

Blower Key
Turn on the blower. Toggles On / Off

Heat Key
Turn on the heater Toggles On / Off. Will not operate without blower running

Vacuum Key
Turn on the vacuum generator Toggles On / Hold (holds vacuum) / Off (releases vacuum)

Alarm Key
Activate the alarm. Toggle activate / deactivate

Parameter Key
Used to move forward through internal parameters list. Use * to move backwards through list. (Program and Advanced Mode only)
3.6.3 - Star Functions

Star functions are specific settings and routines that can be set in the Dryer. The star functions are divided into three groups, “Manual Mode”, “Program Mode” and “Advanced Mode”, which are separated by individual passwords. Manual Mode star functions are specific to daily operation and basic setup of the Dryer while Program Mode includes additional star functions that are more specific to administrative purposes. Advanced Mode star functions are restricted access because these star functions are not intended for typical operation of the Dryer but rather for default settings that should never be altered unless otherwise instructed to do so by a Maguire technician.

To enter into Manual Mode: Press * and enter the Manual Mode password (default is 11111).
To enter into Program Mode: Press * and enter the Program Mode password (default is 22222).
To enter into Advanced Mode: Press * and enter the Advanced Mode password (default is 33333).

STAR FUNCTION LIST (followed by explanation)

Press * and two numbers for the following functions:

<table>
<thead>
<tr>
<th>Star Function</th>
<th>Default Setting</th>
<th>Manual</th>
<th>Program</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>22</td>
<td>Disable</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>23</td>
<td>Disable</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>24</td>
<td>Disable</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>25</td>
<td>Disable</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>33</td>
<td>Disable</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>34</td>
<td>Disable</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>35</td>
<td>Enable</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>36</td>
<td>Enable</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>37</td>
<td>20 minutes</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>38</td>
<td>Disable</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>39</td>
<td>Standard Covey</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>40</td>
<td>Enable</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>44</td>
<td>Advance on Time</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>50</td>
<td>Vacuum-Take-Off</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>52</td>
<td>Pulse</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>53</td>
<td>Enable</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>54</td>
<td>Disable</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>66</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>74</td>
<td>Disable</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>76</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>77</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>78</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>79</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>87</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>88</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>89</td>
<td>ENGLISH</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>93</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>96</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>97</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Star Functions – Full Explanations

05 Clears the Alarm Log

Press (¥0.5) to clear the alarm log. See ¥35 for information about the alarm log.

11 Select Date Format, Set current Date and Time

Press (¥1.1) to enter the correct date and time into the real-time clock. Correct date and time is helpful if you are retrieving information in a USB drive printout. Six entries will be requested.

The first display will indicate USA or EUROPE date format. USA will cause all dates to be displayed MONTH/DAY/YEAR. EUROPE will cause all dates to display DAY/MONTH/YEAR. Use the CE key to toggle from one to the other.

Press ¥ to view or change the month, day, year, hour, minute.

The remaining five entries are two digits each: MONTH __, DAY __, YEAR __, HOUR __, MIN __.

Use the ¥ key to step through all fields without change. Enter new settings where required. The correct date and time for Eastern Standard Time were entered at the factory. You will want to correct this for your time zone. After entering the minutes, the controller will exit to program mode and save the changes to date and time. Press Exit again to exit out of Program Mode.

12 Restore Factory Default Settings

Press (¥1.2) to restore the Dryer’s hard-coded factory default settings.

Pressing ¥1.2 restores Factory Default Settings into “User Settings” and “User Backup Settings” (retains certain important information). It will not prompt for confirmation. Resets immediately after ¥12 is pressed. Accessible in Program Mode Only.

22 Auto Start – Disabled/Enabled

Press (¥2.2) to select the Automatic Start option.

*22 allows for a day / time automatic start of the dryer heating and vacuum cycle, (the same as pressing the START button).
For the Auto Start to occur, the Power switch must already be ON.

When ★22 is selected use the CE key to toggle between DISABLED and ENABLED. If you select AUTO START DISABLED, press ★ to exit.

If you select AUTO START ENABLED, use the ★ key to toggle through each weekday. Use the CE key to select between (MONDAY - NEVER) and (MONDAY __:__).

With (MONDAY __:__) (or any other day) selected, enter the time on that day you want the unit to start. Use a 24 hour clock. Example: (MONDAY 07:00), is 7 AM. 7 PM would be 19:00

Use the ★ key to go to next day.
Use the CE key to select NEVER or __:__.
Enter a time where you want an auto start to occur.

When finished, press Exit to save changes, then press Exit again to exit out of Program or Advanced Mode.

Save User Settings

Press (★,2,3) to copy the current “User Settings” into “User Backup Settings”. For an explanation of the memory areas in the Dryer software as well as the use of the Clear and Clear All Routines see page 88.

Once saved, this information is then available for retrieval using the CLEAR routine (press CE key on Power Up) or by using the ★32 function described next. When finished, press Exit to save changes, then press Exit again to exit out of Programming Mode. Accessible in Program Mode Only.

Auto Stop – Disabled/Enabled

Press (★,2,4) to select the Automatic Stop option.

★24 allows for a date/time automatic stop of the dryer heating and vacuum cycle, (the same as pressing the STOP button).

When ★24 is selected use the CE key to toggle between DISABLED and ENABLED. If you select AUTO STOP DISABLED, press ★ to exit.

If you select AUTO STOP ENABLED, use the ★ key to toggle through each weekday. Use the CE key to select between (MONDAY - NEVER) and (MONDAY __:__).

With (MONDAY __:__) (or any other day) selected, enter the time on that day you want the unit to stop. Use a 24 hour clock. Example: (MONDAY 07:00), is 7 AM. 7 PM would be 19:00
Use the ✪ key to go to next day.
Use the CE key to select NEVER or ___:___.
Enter a time where you want an auto stop to occur.

When finished, press Exit to save changes, then press Exit again to exit out of Program or Advanced Mode.

Display Firmware Status and Checksum

Press (✪,2,5) to display the Firmware status and checksum.

<table>
<thead>
<tr>
<th>FIRMWARE OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHECKSUM = xxxxxxxx</td>
</tr>
</tbody>
</table>

Displays the firmware status and checksum.

When finished, press Exit, and then press Exit again to exit out of Advanced Mode. Accessible in Advanced Mode Only.

Restore Saved User Settings

Press (✪,3,2) to copy the “User Backup Settings” into “User Settings”.

For an explanation of the memory areas in the Dryer software as well as the use of the Clear and Clear All Routines see page 88.

<table>
<thead>
<tr>
<th>RESTORE SAVED USER SETTINGS</th>
</tr>
</thead>
</table>

This is useful for retrieving correct information that you may have stored earlier in the “User Backup Settings”. Also, if you have been making changes to User Settings and now wish to restore all settings to what they were at power up, this is the function to use. When finished, press Exit to save changes, then press Exit again to exit out of Programming Mode. Accessible in Program Mode Only.

Material Ready Alarm – Disabled/Enabled

Press (✪,3,3) to enable or disable the material ready Alarm:

<table>
<thead>
<tr>
<th>MATERIAL READY ALARM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISABLED</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATERIAL READY ALARM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENABLED CYCLES: 02</td>
</tr>
</tbody>
</table>

After Enabling Alarm, you must turn off power to the Dryer then turn it back on to activate the Material Ready Alarm.

When this is enabled (and power has been cycle off/on) the Dryer will complete the number of cycles set and then sound an alarm (but the machine will continue running). The alarm output will be “MATERIAL READY”. Pressing silence alarm will kill the alarm permanently (until the machine is de-powered, and then re-powered). The purpose of this alarm is to alert an operator that dry material is ready to be conveyed after a cold start of the dryer. **NOTE**: The dispense valve is disabled for the number of cycles specified.
Use the * key to toggle enabled, disabled. Use the number keys to enter the cycle count (use a leading zero for single digit values, i.e. 02). When finished, press Exit to save changes, then press Exit again to exit out of Program or Manual Mode.

Index Alarm – Disabled/Enabled

Press (*,3,4) to enable or disable the Index Alarm:

<table>
<thead>
<tr>
<th>INDEX ALARM DISABLED</th>
<th>INDEX ALARM ENABLED</th>
</tr>
</thead>
</table>

When this is enabled, the machine will alarm after every index. It will not shutdown, just alarm. This is intended for lab environments where someone has to manually empty the canisters after each index. Use the * key to toggle enabled, disabled. When finished, press Exit to save changes, then press Exit again to exit out of Program or Manual Mode.

Alarm Log (Program and Advanced Mode Only)

Press (*,3,5) to view log of Alarm messages:

| ... Alarm message ... | ... Date and Time ... |

Displays last 25 alarms in the order of most recent occurrence. Use the * key to toggle through alarm messages. When finished, press Exit, then press Exit again to exit out of Advanced Mode.

Cycle Time Alarm – Enabled/Disabled

Press (*,3,6) to enable or disable the Cycle Alarm:

<table>
<thead>
<tr>
<th>CYCLE ALARM DISABLED</th>
<th>CYCLE ALARM ENABLED</th>
</tr>
</thead>
</table>

When enabled you may set a time delay between uncovering the sensor and the alarm (defaults to 10 seconds). When this is enabled, the machine will alarm after the specified delay if the Vacuum Take-Off Assembly (VTA) runs out material before the end of the cycle. This indicates that the demand for material is exceeding the Dryers capacity to provide material. It will not shutdown, just alarm. Use the * key to toggle enabled, disabled. When finished, press Exit to save changes, then press Exit again to exit out of Program.

Maximum Clean Time – Set Time Value

Press (*,3,7) to set the Maximum Clean Time:

<table>
<thead>
<tr>
<th>CLEAN TIME ALARM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time: 20 minutes</td>
</tr>
</tbody>
</table>
Active only in Clean Mode. This star function allows the user to specify a time limit before the Dryer alarms indicating the end of the Clean Time. The default value for this star function is 20 minutes. Setting the value to 0 (zero) will cause a Clean Time alarm at the end of the cycle. When finished, press Exit to save changes, then press Exit again to exit out of Program. Also see page 29 for more information about Clean Mode.

Oxidation Control

Press (*,3,8) to enable or disable the Oxidation Control:

This feature can only be enabled when Cycle Mode is set to Advance on Empty. When enabled the oxidation control will shutdown the blower and heater if the cycle time expires before the canister is empty.

The parameter Forced Index Timeout (FIT) is used only in conjunction with the feature Oxidation Control. FIT defaults to 0. When FIT is set, the cycle will automatically end FIT minutes after the expiration of the cycle time.

Convey Mode

Press (*,3,9) to select between “Standard Convey”, “Convey and Purge” and “Convey to Dryer”:

- **Standard Convey**: In “Standard Convey” the Dryer will continue to dispense material to a Receiver mounted on the process until the Receiver’s sensor is covered. After the initial fill, if the receiver sensor is not satisfied on the third attempt, the “***ERROR***, CONVEYER” will occur. Also see “Installing the Maguire Receiver on a process machine” on page 15.

- **Convey and Purge**: Selecting “Convey and Purge” will cause the “dispense” valve to remain closed at all times except just before conveying material. With this option ON, when the Convey sensor calls for material to be vacuum conveyed to the process machine, the canister empty valve will open first, only for a few seconds, to fill the Vacuum Takeoff Assembly (VTA) located below the canister. It will then close and the convey cycle will start loading only that material, emptying the take-off tray and also purging the convey line. This feature helps to reduce the possibility of moisture contamination during long idle times associated with very low production rates.

- **Convey to Dryer**: If you want to load the Dryer using a Maguire Receiver, select this option. Also see “Using the Maguire Receiver to load the Dryer” on page 17.

Use the * key to toggle between “Standard Convey”, “Convey and Purge” and “Convey to Dryer”. When finished, press Exit to save changes, then press Exit again to exit out of Program or Manual Mode.
Convey Alarm – Disabled/Enabled

Press (*,4,0) to enable or disable the Convey Alarm:

| CONVEY ALARM DISABLED | CONVEY ALARM ENABLED |

After initial filling of the Maguire receiver, the dryer will alarm if the Maguire receiver conveying material to your process does not fill on the 3rd attempt. The alarm will not stop the material from conveying, it will just alarm. Use the * key to toggle enabled, disabled of alarming.

When finished, press Exit to save changes, then press Exit again to exit out of Manual, Program or Advanced Mode.

Advance on Time/Empty

Press (*,4,4) to select between:

<table>
<thead>
<tr>
<th>ADVANCE ON TIME</th>
<th>ADVANCE ON EMPTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILL TIME: _____</td>
<td></td>
</tr>
</tbody>
</table>

The default selection is ADVANCE ON TIME. This is the standard mode of operation. The canisters advance (index) when the cycle timer times out, even though it is not empty.

With ADVANCE ON EMPTY selected, canisters advance only after the cycle time has elapsed and the canister is empty and the sensor in the vacuum take-off tray is uncovered. In this mode a full canister may take an hour or more to be consumed if throughput is low. Cooling of material and moisture pick up may be a problem. To solve that, you can shorten the fill, only partially filling the canister.

Fill time, in seconds, may be entered at this point. Each second equals about 2 pounds on LPD 100 / 200 series dryers, and 1/2 pound on LPD 30 series dryers. An entry of zero (00) will cause the fill valve to stay open, which means a full canister. Entries up to 9999 seconds are allowed. The CFT parameter holds the entry and it can be altered there as well. When finished, press Exit to save changes, then press Exit again to exit out of Program or Manual Mode.
Change Manual Mode Password

Press (**4,5**), followed by a 5 digit number to change the password number for entering the manual mode.

| PASSWORD – 5 DIGITS | MANUAL MODE: 11111 |

The system is supplied with the number "11111" as the manual mode password number. If you wish to restrict use of this mode to only yourself, you may make up your own number and enter it here. When finished, press **Exit** to save changes, then press **Exit** again to exit out of Program Mode. Accessible in Program and Advanced Modes Only. If you forgot the Manual Mode password, it can be reset from Program and Advanced Modes.

Material Dispense Mode – Vacuum-Take-Off/Gravity

Advanced Mode Only

Press (**5,0**) to alter the operation of the dispense valve.

<table>
<thead>
<tr>
<th>MAT DISPENSE MODE</th>
<th>VACUUM-TAKE-OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT DISPENSE MODE</td>
<td>GRAVITY</td>
</tr>
</tbody>
</table>

When set to “Vacuum-Take-Off” the signal from the 4-pin “Convey” connector operates as it always has.

When set to “Gravity” the convey connector will be a switch that will enable or disable the dispense valve, meaning that if the path between pin 1 and pin 3 is open, the dispense valve will operate as it normally would (automatically). If the path between pin 1 and pin 3 is closed, the dispense valve will be disabled.

Use the **#** key to toggle through each dispense mode. When finished, press **Exit**, and then press **Exit** again to exit out of Advanced Mode. Accessible in Advanced Mode Only.
Dispense Valve - Disabled/Enabled/Pulsed

Press (★,5,2) to alter the operation of the dispense valve.

Options are “Disabled”, “Enabled”, and “Pulsed”. Normal operation is “Pulsed”. When “Disabled” selected, the dispense valve will not operate in the normal automatic way. The front canister will not empty. This is useful in a Lab environment, where the operator intends to remove the full canister from the dryer once the material is dried. When “Pulsed” is selected, dispense valve will pulse on and off when dispensing. Use the ★ key to toggle through each dispense mode. When finished, press Exit to save changes, then press Exit again to exit out of Manual or Program Mode.

Fill Valve - Disabled/Enabled

Press (★,5,3) to alter the operation of the fill valve.

Options are “Disabled” and “Enabled”. Normal operation is “Enabled”. When “Disabled” selected, the fill valve will not operate in automatic mode and the canister in the Fill and Heat Station will not fill. This is useful in a Lab environment. Use the ★ key to toggle through each dispense mode. When finished, press Exit to save changes, then press Exit again to exit out of Manual or Program Mode.
Printer - Enabled/Disabled

Press (*,5,4) to ENABLE printout of data during each cycle operation.

- **PRINTER DISABLED**
- **PRINTER ENABLED**
 - TIME INTERVAL: 010s

When “Enabled”, and with a USB Drive connected, a line of information prints repeatedly based on the “Time Interval” you select. A line of data prints at the end of the cycle as well as every time the vacuum turns on or off.

This data includes: date, time, elapsed cycle time, temperature, heater percentage on, vacuum. This is excellent information to track dryer performance. More detailed explanation of this information is in the **PRINTER OUTPUT** section of this manual on page 86.

Use the * key to toggle between ENABLED and DISABLED. When ENABLED, use the keypad to enter the desired TIME INTERVAL, in seconds.

When finished, press Exit to save changes, then press Exit again to exit out of Manual or Program Mode.

Notes about printing to a USB drive

When saving printout information to a USB drive, the USB drive must contain a folder named maguire and within the folder, a file labeled PRINTER.TXT must be present. It is this file, PRINTER.TXT that printout functions appended to. Also note that every time a print occurs to the file on the USB drive, the data is appended to the end of the file PRINTER.TXT and does not overwrite existing data within the file.

Display LPD I.D. Number

Advanced Mode Only

Press (*,6,6) to enter an identification number for this particular Dryer.

- **LPD COMMUNICATIONS**
 - ID. NUMBER: 000

This I.D. number appears on all printed reports. If you have more than one unit, this helps to identify reports. Valid numbers are 001 to 254 and need not be consecutive.

In future releases of the Maguire LPD Dryer, software will be available for data acquisition using a computer to automatically gather information. When software is available, each LPD controller must have a unique address. NOTE: Software is not available at this time.

When finished, press Exit, and then press Exit again to get out of Advanced Mode. Accessible in Advanced Mode Only.
Hopper Fill Alarm - Enabled/Disabled

Press (*,7,4) to “Enable/Disable” the Fill Alarm.

<table>
<thead>
<tr>
<th>HOPPER FILL ALARM DISABLED</th>
<th>FILL ALARM ENABLED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alarm Time: 12</td>
</tr>
</tbody>
</table>

Use the * key to toggle enabled, disabled. When enabled, may enter a value in minutes. When enabled, the Dryer alarms if the hopper fails to fill within the time specified (default 12 minutes). When finished, press Exit to save changes, then press Exit again to exit out of Manual or Program Mode.

Print the Alarm Log

Press (*,7,6) to print a copy of the last 25 alarms. A USB Drive must be connected to the USB port. The printout will display a list of the last 25 alarms including the date and time of each alarm. When saving printout information to a USB drive, the USB drive must contain a folder named maguire and within the folder, a file labeled PRINTER.TXT must be present.

Print Parameters

Press (*,7,7) to print a copy of all internal parameters. A USB printer or USB Drive must be connected and ready. The printout will display the Dryer software version, the controller I.D. number, a list of all parameters and their current values. When saving printout information to a USB drive, the USB drive must contain a folder named maguire and within the folder, a file labeled PRINTER.TXT must be present.

Change Program Mode Password

Press (*,7,8, followed by a 5 digit number) to change the PASSWORD number for entering the PROGRAM mode. The default password is “22222”. To restrict use of this mode, you may create your own number and enter it here. If you forget your password number, call us for help.

| PASSWORD – 5 DIGITS |
| PROGRAM MODE: 22222 |

When finished, press Exit to save changes, then press Exit again to exit out of Programming Mode. Accessible in Program and Advanced Mode. If you forgot the Program Mode password, it can be reset from Advanced Mode.
Change Advanced Mode Password
Advanced Mode Only

Press (*, 7, 9, followed by a 5 digit number) to change the PASSWORD number for entering the ADVANCED mode. The default password is "33333". To restrict use of this mode, you may create your own number and enter it here. If you forget your password number, call us for help.

PASSWORD – 5 DIGITS
PROGRAM MODE: 33333

When finished, press Exit to save changes, then press Exit again to exit out of Advanced Mode. Accessible in Advanced Mode Only. If you forgot the Advanced Mode password, please call Maguire Products.

Display Absolute Vacuum (mmHg)

Press (*, 8, 7) to toggle the display of vacuum between Absolute Pressure or standard vacuum reading.

Select Language Format

Press (*, 8, 8) to select the language format.

SELECT LANGUAGE
ENGLISH

Use the * key to toggle between languages ENGLISH, FRANCAIS, ITALIANO, DEUTCH, CZECH. Note: ENGLISH 5,6,7 are placeholders for future additions to the language choices.

When finished, press Exit to save changes, then press Exit again to exit out of Advanced Mode.

Vacuum Units Display - English/Metric

Press (*, 8, 9) to select the Vacuum Units displayed, Inches of Mercury or Millimeters of Mercury.

UNITS DISPLAY
ENGLISH
METRIC

Use the * key to toggle between "ENGLISH" or "METRIC".

When finished, press Exit to save changes, then press Exit again to exit out of Manual or Program Mode. Note: Temperature display of Fahrenheit or Celsius is controlled by Dryer firmware. If there is a need to change the dryer’s display temperature units, please call Maguire products and request the appropriate firmware.

Update Controller Software From USB Drive

Press (*,9,3) to initiate a software update from the USB Drive. Pressing *,9,3 will
cause the controller to search the USB drive for a folder named maguire and 3 files within the folder maguire named: UPDATER3.BIN, 912DGxxxxx.crc, and 912DGxxxxx.s28. If more than one .s28 file exists in the maguire folder, the controller will prompt you to select the version. Press the * key to toggle between versions. Press the CE key to select the version you want to upload. The controller will then verify the file. If verification is successful the controller will upload the new software. DO NOT turn off the controller during this process. Wait until you see Update Complete! Then turn off the controller and turn it back on again.

Access Flash Card Utility - Advanced Mode Only

Press (***9,6); to access to the flash card utility that is used with a special Maguire Flash Card. This method is primarily used at the factory or if directed by a Maguire Technician. Customers generally would use the USB drive method (**93) to update LPD software.

| Flash-card: <none> |

When finished, press Exit, and then press Exit again to exit out of Advanced Mode. Accessible in Advanced Mode Only.

Operating Mode Normal/Service

Press (***9,7); display will say (NORMAL). Press the * key to toggle between Normal and Service Operating Modes.

| OPERATING MODE NORMAL | OPERATING MODE SERVICE |

Selecting SERVICE will allow all devices to continue operating with the door open. The door safety interlock is bypassed. This feature allows service personal to temporarily observe operation for trouble shooting and diagnostic purposes without removing panels or in some other way defeating the safety interlock.

WARNING! Using **9,7** disables the door safety interlock and exposes service personnel to potential safety hazards. Use extreme caution when using **9,7** and be aware of hot surfaces, pitch hazards and moving objects.

NOTE Service Mode in European Dryer Models does not allow activation of canister indexing.

Use the * key to toggle between Normal and Service Operating Modes.

NOTE You must turn off Service Mode (return to OPERATING MODE: NORMAL), to return to Auto Mode.

When finished, press Exit, and then press Exit again to exit out of Advanced Mode. Accessible in Advanced Mode Only.
3.6.4 – Parameters

Changing parameters can have an impact on the Dryers performance. It is highly recommended that a supervisor change the default Program Mode and Advanced Mode passwords to protect the parameter values. Prior to making any parameter changes, make sure you understand what you are doing.

Changes to the parameter table will be indicated in the detailed description of the parameter explaining the change and when it occurred.

All Low Pressure Dryer controllers operate according to certain internal Parameters. Because customer requirements vary, we have made the following parameters accessible for change through the keypad in Program Mode. Advanced Mode parameters are separated to restrict access because these parameters are either set to defaults that should never be altered or are default settings that are optimal for proper dryer operation. You should never need to access the Advanced Parameters unless instructed to do so by a Maguire LPD Technician.

To access the optional parameters, enter into Program Mode:
Press * and enter the Program Mode password (default is 22222).

To enter into Advanced Mode:
Press * and enter the Advanced Mode password (default is 33333).

Press the PARA key repeatedly to view the parameters.
Parameters values are always five digits, using leading zeros as required.

TIMES Are expressed as full seconds or full minutes.
PERCENTS are expressed in full percents.
TEMPERATURES are expressed in full degrees (Fahrenheit or Celsius).
COMPLETE PARAMETER LIST - BRIEF EXPLANATIONS

The following parameters are both Program Mode and Advanced Mode parameters.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SHORT DESCRIPTION</th>
<th>MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRY</td>
<td>Drying Cycle Time - minutes</td>
<td>✓</td>
</tr>
<tr>
<td>TTP</td>
<td>Target Temperature - degrees (Fahrenheit or Celsius) See *89</td>
<td>✓</td>
</tr>
<tr>
<td>CFT</td>
<td>Canister Fill Time, in Advance on Empty mode only.</td>
<td>✓</td>
</tr>
<tr>
<td>SHP</td>
<td>Start heat - Percentage Heat On time - %</td>
<td>✓</td>
</tr>
<tr>
<td>NHA</td>
<td>No Heat Alarm - seconds</td>
<td>✓</td>
</tr>
<tr>
<td>STC</td>
<td>Start Temperature Control - F degrees delta</td>
<td>✓</td>
</tr>
<tr>
<td>HTO</td>
<td>Heat Adjustment Time - seconds</td>
<td>✓</td>
</tr>
<tr>
<td>TDF</td>
<td>Temperature Rise Too Fast - F degrees</td>
<td>✓</td>
</tr>
<tr>
<td>HAL</td>
<td>Heat Adjustment Limit - percent</td>
<td>✓</td>
</tr>
<tr>
<td>HCT</td>
<td>Heat Cycle Multiplier</td>
<td>✓</td>
</tr>
<tr>
<td>BTM</td>
<td>Blower: off on high temp, on before Heat - seconds</td>
<td>✓</td>
</tr>
<tr>
<td>ECD</td>
<td>Delay New Cycle - seconds</td>
<td>✓</td>
</tr>
<tr>
<td>NVT</td>
<td>No Vacuum Threshold - Inches of Mercury</td>
<td>✓</td>
</tr>
<tr>
<td>LRT</td>
<td>Lock Release Time - seconds</td>
<td>✓</td>
</tr>
<tr>
<td>PST</td>
<td>Position Settle Time - seconds</td>
<td>✓</td>
</tr>
<tr>
<td>LDD</td>
<td>Lock Detect Delay - seconds</td>
<td>✓</td>
</tr>
<tr>
<td>HOT</td>
<td>Heater OFF Temperature</td>
<td>✓</td>
</tr>
<tr>
<td>ATS</td>
<td>Anticipated Temp - Sooner</td>
<td>✓</td>
</tr>
<tr>
<td>ATL</td>
<td>Anticipated Temp - Later</td>
<td>✓</td>
</tr>
<tr>
<td>NCT</td>
<td>No change Temperature</td>
<td>✓</td>
</tr>
<tr>
<td>RCC</td>
<td>Rate of Correction Constant</td>
<td>✓</td>
</tr>
<tr>
<td>MAX</td>
<td>Maximum Temperature - degrees</td>
<td>✓</td>
</tr>
<tr>
<td>CFA</td>
<td>Convey Failure Alarm - retry time and failures before alarm</td>
<td>✓</td>
</tr>
<tr>
<td>VPD</td>
<td>Vacuum Pressure Differential</td>
<td>✓</td>
</tr>
<tr>
<td>VAL</td>
<td>Vacuum Alarm</td>
<td>✓</td>
</tr>
<tr>
<td>PRG</td>
<td>Purge Interval/Time - frequency and time</td>
<td>✓</td>
</tr>
<tr>
<td>HDY</td>
<td>Heat Delay after convey - delays heater restart.</td>
<td>✓</td>
</tr>
<tr>
<td>DOP</td>
<td>Door Open Pause, minutes before cycle is aborted.</td>
<td>✓</td>
</tr>
<tr>
<td>EDC</td>
<td>Empty Delay Close, use with Convey with Purge *39.</td>
<td>✓</td>
</tr>
<tr>
<td>DBS</td>
<td>Delay Blower Start - seconds</td>
<td>✓</td>
</tr>
<tr>
<td>PHD</td>
<td>Pre Heat delay - seconds.</td>
<td>✓</td>
</tr>
<tr>
<td>HFT</td>
<td>Heat Failure Time - Seconds / Temperature</td>
<td>✓</td>
</tr>
<tr>
<td>DPO</td>
<td>Dispense Pulsing Value (Dispense Pulse Option)</td>
<td>✓</td>
</tr>
<tr>
<td>FPO</td>
<td>Fill Pulse Option</td>
<td>✓</td>
</tr>
<tr>
<td>ATO</td>
<td>Temperature Offset</td>
<td>✓</td>
</tr>
<tr>
<td>BOV</td>
<td>Blower Off Vacuum</td>
<td>✓</td>
</tr>
<tr>
<td>VOF</td>
<td>Vacuum Off Point (mmHg)</td>
<td>✓</td>
</tr>
<tr>
<td>VON</td>
<td>Vacuum On Point (mmHg)</td>
<td>✓</td>
</tr>
<tr>
<td>V2F</td>
<td>To configure dual Vacuum settings (LPD 1000 only)</td>
<td>✓</td>
</tr>
</tbody>
</table>
COMPLETE PARAMETER LIST – DEFAULT VALUES PER MODEL

Shown are default parameter values at the time of publication. Dryer defaults may vary from these defaults.

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>LPD 30</th>
<th>LPD 100</th>
<th>LPD 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRY</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TTP</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CFT</td>
<td>38</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>SHP</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>NHA</td>
<td>10060</td>
<td>10060</td>
<td>10060</td>
</tr>
<tr>
<td>STC</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>HTO</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>TDF</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>HAL</td>
<td>510</td>
<td>510</td>
<td>510</td>
</tr>
<tr>
<td>HCT</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>BTM</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>ECD</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>NVT</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>LRT</td>
<td>1003</td>
<td>1003</td>
<td>1003</td>
</tr>
<tr>
<td>PST</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>LDD</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>HOT</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ATS</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>ATL</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>NCT</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>RCC</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>MAX</td>
<td>350</td>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td>CFA</td>
<td>1003</td>
<td>1003</td>
<td>1003</td>
</tr>
<tr>
<td>VPD</td>
<td>2627</td>
<td>2627</td>
<td>2627</td>
</tr>
<tr>
<td>VAL</td>
<td>25090</td>
<td>25090</td>
<td>25120</td>
</tr>
<tr>
<td>PRG</td>
<td>11001</td>
<td>11002</td>
<td>11002</td>
</tr>
<tr>
<td>HDY</td>
<td>5005</td>
<td>5005</td>
<td>5005</td>
</tr>
<tr>
<td>DOP</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>EDC</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>DBS</td>
<td>40</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>PHD</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>HFT</td>
<td>6005</td>
<td>6005</td>
<td>6005</td>
</tr>
<tr>
<td>DPO</td>
<td>3106</td>
<td>3106</td>
<td>3106</td>
</tr>
<tr>
<td>FPO</td>
<td>3100</td>
<td>3100</td>
<td>3100</td>
</tr>
<tr>
<td>ATO</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>BOV</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VOF</td>
<td>5074</td>
<td>5074</td>
<td>5074</td>
</tr>
<tr>
<td>VON</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>V2F</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
PARAMETERS - FULL EXPLANATIONS – also see “Changing / Saving Parameters” on page 60.

The following parameters are listed in the order in which they are found in the Dryer’s parameter list. Some parameters are accessible in Program Mode and may be changed if necessary. Others are accessible in Advanced Mode and are noted. See the list on the previous page for each parameter’s mode. **Note: You should never need to access the Advanced Parameters unless instructed to do so by a Maguire LPD Technician.** These parameters are restricted access because they are either set to a default setting that should never be altered or are default settings that are optimal for proper dryer operation.

DRY – Drying Cycle Time - minutes

This parameter overrides the Cycle Time thumbwheel. The cycle time thumbwheel switch is normally used to set this value. If this parameter is set to a value, then this value overrides the thumbwheel switch. Otherwise leave this parameter set to zero so the thumbwheel switches control. You must enter 5 digits. Use leading zeros. Example: 00030 is 30 minutes. Default setting is 00000.

TTP - Target Temperature - degrees (Fahrenheit or Celsius)

This is at least 20 degrees below the softening point of the plastic to prevent clumping of pellets, but must be over 150/160 to assure boil off of moisture under vacuum. The temperature thumbwheel switch is normally used to set the target temperature. If this parameter is set to a value, then this value overrides the thumbwheel switch. Otherwise leave this parameter set to zero so the thumbwheel switches control. You must enter 5 digits. Use leading zeros. Example: 00250 is 250 degrees Fahrenheit. Default is 00000. Also see *89, for setting the temperature format.

CFT - Canister Fill Time – seconds

DO NOT CHANGE THIS PARAMETER – ADVANCED MODE ONLY

When *44 is set to “Advance on Empty” the CFT parameter value is used for the Fill Time. Setting the fill time in *44 (Advance on Empty) sets the last 3 digits in the CFT parameter. Note: Setting the fill time in the CFT parameter will set the fill time in *44.

The last 3 digits (xx060) is the fill time in seconds.

SHP - Start heat – Heat On time – percent

DO NOT CHANGE THIS PARAMETER – ADVANCED MODE ONLY

The heater temperature is controlled by turning power on and off every second. The percentage of ON time each second determines the power to the heater. This parameter sets the initial starting Percentage of Heat-On time, placing a starting limit on heater capacity in case the heater is entirely too strong for the job. For the equipment we have provided, leave this parameter set to 100.
NHA - No Heat Alarm – seconds

DO NOT CHANGE THIS PARAMETER – ADVANCED MODE ONLY

This is the maximum time limit, in seconds, after the heat cycle begins, during which one of the following two conditions must be detected: Either the temperature must climb 20 degrees, or the temperature must move at least 20 percent toward the target temperature. If neither condition is met the “NO HEAT” alarm will sound.

Such an occurrence would signal a failure of either the heater or the blower. This parameter protects the heater from burn out in the event the blower fails or airflow is blocked. This is a one-time check. After satisfying this condition, we assume heating is OK.

After the Dryer reaches set temperature, and is stable, we use this parameter to detect heat loss. If the temperature drops 10 degrees or more below target, and stays there for longer then the time specified in this parameter, the “NO HEAT” alarm will sound.

STC - Start Temperature Control – F degrees delta

DO NOT CHANGE THIS PARAMETER – ADVANCED MODE ONLY

This parameter specifies the degrees below Target temperature where heater control begins. The heater stays at full startup power (100 percent on) until this temperature is reached. Once this point is reached, temperature control begins.

HTO - Heat Adjustment Time – seconds

DO NOT CHANGE THIS PARAMETER – ADVANCED MODE ONLY

This parameter determines the maximum time between heat control adjustments. It should be set high enough to allow time for a change to be seen by the heat sensor. It should not be less then the time for some feedback to occur. Too short a time results in excessive control adjustments and overshooting. Too long a time may result in overshooting under some conditions because necessary adjustments do not occur rapidly enough.

TDF - Temperature Rise Too Fast – F degrees

DO NOT CHANGE THIS PARAMETER – ADVANCED MODE ONLY

Temperature rise of this amount in less time then the HTO parameter (above) will force an immediate checking of the heat power setting. This allows for more frequent downward adjustment, if necessary, during rapid temperature ramp up. It controls during rapid temp rise only.

HAL - Heat Adjustment Limit

DO NOT CHANGE THIS PARAMETER – ADVANCED MODE ONLY

HAL parameter has 2 fields. First field, digits 2 and 3, set the heat adjustment limit in the upward direction. Second field, digits 4 and 5, set the heat adjustment limit in the downward direction. Additionally, the limits are now absolute values instead of a percentage from the current heat percentage. There is also a new default value, which is 00510.
The overheat protection code is also affected by this change. Whenever temperature exceeds (target+HOT) degrees, heaters are shut off and heat percentage decreased by HAL%. Now it will simply reduce heat percentage by the maximum downward adjustment.

Old Definition of HAL:
(Heat Adjustment Limit - percentage point change)
The Maximum Heat adjustments that can occur in one adjustment cycle. This limits the maximum percentage heat adjustment per adjustment cycle to prevent excessive adjusting before correct feedback can occur. What we are adjusting is the percentage of time the heater is turned on each second. 005xx is the limit to an UPWARD adjustment. Xxx10 is the limit to a downward adjustment. For example, if the “percentage on” is currently 60, then this parameter would limit the next adjustment to no more than 5 points up, or 10 points down, to either 65 or 50.

HCT - Heat Cycle Multiplier
DO NOT CHANGE THIS PARAMETER – ADVANCED MODE ONLY
Standard heater on/off cycle is 1 second. If you wish to have longer cycles, set this multiplier to some greater value. We currently see no advantage to longer cycle times.

BTM – Blower OFF time if heat is off, and temp is exceeded.
Blower On Time before Heat-On – seconds
DO NOT CHANGE THIS PARAMETER - ADVANCED MODE ONLY
The first 3 digits (000xx) indicate, in seconds, how long the blower will be turned off if the heater duty cycle has dropped to zero, and the temperature is still climbing. This occurs when the requested temperature is low, usually below 180F (82C) on a 100 series dryer, and the blower be itself generates enough heat to exceed the set temperature. Default is 0 seconds (off).

The last 2 digits (xxx04) indicate the delay, in seconds, after the blower is started, before the Heater is turned on. This assures that the blower is up to speed and air is flowing over the heater, before powering up the heater.

ECD - End of Cycle Delay - seconds
This is the delay, in seconds that the “Dispense Station” level sensor must be uncovered before the next cycle is initiated. This prevents a momentary uncovering of the sensor, during conveying for example, from ending a cycle and advancing the canisters prematurely. You must enter 5 digits. Use leading zeros. Example: 00005 is 5 seconds. Default is 00005.

NVT - No Vacuum Threshold - Inches (or mm) of Mercury
DO NOT CHANGE THIS PARAMETER - ADVANCED MODE ONLY
Readings below this setting are considered Atmospheric Pressure. Indexing of canisters is delayed until this value (or lower) is reached. This assures the vacuum disks are released before an attempt is made to advance the canisters. If unit is set for Metric, this number will be set to 00025 millimeters.
LRT - Lock Release Time - seconds

DO NOT CHANGE THIS PARAMETER - ADVANCED MODE ONLY

The first 2 digits (01xxx) indicate, in seconds, an added delay time after a canister bleed when pressure reaches the NVT setting and the lock is released. Default is set to 1 second (01xxx).

The last 3 digits (xx003) indicate the delay, in seconds, after the lock is released, before indexing occurs. This assures the lock is fully released before indexing.

PST - Position Settle Time - seconds

DO NOT CHANGE THIS PARAMETER - ADVANCED MODE ONLY

This is the time, in seconds, that is allowed for indexing to the next position. After this time the software checks to be sure that the canisters did advance, and then operates the lock solenoid.

LDD - Lock Detect Delay - seconds

DO NOT CHANGE THIS PARAMETER - ADVANCED MODE ONLY

After the lock solenoid is activated, this is the time, in seconds, that lock detect must be present continuously before the cycle begins. This assures the cam is fully seated into the detent, which assures that canister movement has stopped. At the end of this time the cycle starts. If this time out does not occur within 5 seconds of operation of the lock, an ALARM will sound.

HOT - Heater OFF Temperature

DO NOT CHANGE THIS PARAMETER - ADVANCED MODE ONLY

Degrees above Target (TTP), which forces the Heater OFF. This limits unintentional overshoot. It is a safety, not part of normal heat control logic. If it does occur a downward temperature adjustment to heater percent on time occurs before the heater is turned back on.

ATS and ATL - Anticipated Temperatures – Sooner and Later

DO NOT CHANGE THIS PARAMETER – ADVANCED MODE ONLY

The next two parameters, ATS and ATL, work together to anticipate two future temperatures, allowing control logic to keep the rate of rise correct, allowing rapid temperature rise while preventing overshoot. By looking at two consecutive temperature readings, a rate of change is calculated and from this, two forward anticipated temperatures are calculated; one sooner and one later. Temperature adjustments ONLY occur when both forward temperatures are over or both are under the target. When both are OVER, adjustment is DOWNWARD. When both are UNDER, adjustment is UPWARD.
ATS - Anticipated Temp – Sooner – seconds

DO NOT CHANGE THIS PARAMETER – ADVANCED MODE ONLY

This parameter specifies the “sooner” time forward, in seconds, to anticipate temperature. It controls when temperature is climbing or falling too rapidly. Higher numbers cause more cautious corrections. Lower Numbers allow logic to ramp up to temperature more quickly. If temperature overshoots on initial ramp up, this number is too low.

ATL - Anticipated Temp – Later – seconds

DO NOT CHANGE THIS PARAMETER – ADVANCED MODE ONLY

This parameter specifies the “later” time forward, in seconds, to anticipate temperature. This parameter controls when temperature is climbing or falling to slowly. Higher numbers cause more cautious corrections, useful to prevent hunting once target has been reached, or nearly reached.

NCT - No change Temperature – 0.1 degrees

DO NOT CHANGE THIS PARAMETER – ADVANCED MODE ONLY

This prevents adjustments from occurring if BOTH the ATS and ATL temperatures are within this limit, in 1/10 degree, of TARGET. Using the default setting (NCT 00005), if both future temperatures calculated using ATS and ATL are within ½ (0.5) degrees of Target, no adjustment occurs.

RCC - Rate of Correction Constant

DO NOT CHANGE THIS PARAMETER – ADVANCED MODE ONLY

Interacts with the adjustment amount math routine to fix the extent of correction that an error causes. Lower numbers cause larger corrections, but may produce hunting. Higher numbers produce smaller corrections, and are safer, but slow correction response time. The number is used in a software algorithm to calculate corrections. Call us if you want to know exactly how it works. We have to leave our competitors something to figure out on their own. If hunting above and below target occurs continuously, raise this number.

MAX - Maximum Temperature - F degrees

This number is the maximum temperature limit that the Dryer will run up to. Any temperature setting on the Temperature thumbwheel, above this number will be limited to this maximum temperature. If the thumbwheel is set to a temperature above this MAX setting, the “TARGET TEMP TOO HIGH” alarm activates.

CFA - Convey Failure Alarm - sec / tries - ignore sensor flag

If a convey sequence does not result in the sensor being covered, this parameter determines the time delay before the receiver will try again. It also sets how many tries must occur before the alarm is activated. x05xx sets retry time to 5 seconds. xxx03 sets the number of tries before alarm to 3. For Convey Mode options see *39 in the Star Functions section, page 37.
VPD - Vacuum Pressure Differential – inches of mercury

DO NOT CHANGE THIS PARAMETER – ADVANCED MODE ONLY

This parameter sets the vacuum readings that turn the vacuum circuit ON and OFF. This serves to reduce compressed air consumption. Using the default settings, the vacuum generator stays on until a vacuum of 27 inches is reached. Then it turns off and remains off until vacuum falls below 26 inches. Entering unreachable numbers, like 03540, keeps the vacuum on all the time. If unit is set for Metric, this number is still set in INCHES of mercury.

VAL - Vacuum Alarm – inches / seconds

DO NOT CHANGE THIS PARAMETER – ADVANCED MODE ONLY

This parameter sets the point at which the system ALARMS if a proper vacuum is not established. If a VACUUM of 25 inches is not reached within 90 seconds after the start of a cycle, the Alarm sounds. Additionally, if, after reaching 25, the vacuum drops to 2 inches below 25 (23), the alarm sounds. Vacuum is necessary for drying. If this alarm sounds, a vacuum problem exists and must be corrected.

Read “NOTE” above.

PRG - Vacuum Purge frequency and time

This parameter instructs the software to operate the purge valve for a period of time in seconds (e.g. xx015 is 15 seconds), once every xx minutes (10xxx is 10 minutes). The purge valve will also operate one additional time at the end of the cycle to bleed off vacuum.

HDY - Heat during and delay after convey – percent / seconds

DO NOT CHANGE THIS PARAMETER – ADVANCED MODE ONLY

Because hot air is diverted during conveying, temperature readings may not be correct. As a precaution, this parameter reduces the heater percentage-on time during conveying, and then also waits a specified time after conveying before adjustments begin. This prevents overheating and allows heat readings to stabilize after a convey cycle.

DOP - Door Open Pause before cycle is aborted - minutes

DO NOT CHANGE THIS PARAMETER - ADVANCED MODE ONLY

If the door is opened during operation the system shuts off. Closing the door will restart the cycle at the same timing point when shut down. This parameter sets a time limit, after which the cycle timer will be reset to zero. A new full cycle time will take place upon restart. Default is 5 minutes.
EDC - Empty Delay Close, use with Convey with Purge *39 - seconds

DO NOT CHANGE THIS PARAMETER - ADVANCED MODE ONLY

This parameter times how long the canister "empty" valve stays open after material covers the sensor. When the *39 "convey with purge" option is being used, material is not allowed to lay in the take off area. To accomplish this, the "empty" valve only opens when material is required, just prior to it being conveyed. Once the sensor is covered, the valve closes again. But first it waits the 2 seconds specified in this parameter to be sure the take off area is full.

DBS - Delay Blower Start, allows fill time for canister -- seconds

DO NOT CHANGE THIS PARAMETER

This parameter delays the start of the blower until after the canister fill time elapses. The default parameter value is 00005 (5 seconds). Setting the DBS parameter to 0 (00000), disables the delay and the blower starts as soon as the cycle begins.

PHD - Pre Heat delay - seconds

DO NOT CHANGE THIS PARAMETER - ADVANCED MODE ONLY

This parameter delays all heat adjustments at the start of each cycle, for the time specified. When cold material is shifted into position after indexing, the initial heat readings swing widely. This delays temperature adjustment until some stability is reached.

HFT - Heat Failure Time - Seconds / Temperature

DO NOT CHANGE THIS PARAMETER - ADVANCED MODE ONLY

This parameter tells the software what is the very least to expect when the heat percentage on time is increased. The default value says that after 30 seconds, the temperature should not be below current setting by more then 5 degrees. After a call for more heat, if the temperature drops more then is possible with all systems working correctly, this parameter will cause a shut down of the dryer.

DPO - Dispense Pulse Option

This parameter allows pulsing of the dispense/empty valve. The pulse options are set by a parameter DPO. The parameter encodes three options:

The first two digits (01xxx) sets dispense valve “on time” to 1 second.
The middle digit (xx1xx) sets dispense valve “off time” to 1 second.
The last two digits (xxx10) sets the number of pulse attempts/retries.

The default value for DPO is 01110, which gives an on time of 1 second, an off time of 1 sec, and up to 10 retries.

With the Dispense Valve set to “Pulsed” (*52), the Dryer will begin opening/closing the dispense/empty valve when the resin-bin sensor uncovers. It will continue pulsing the valve until the bin sensor covers or the retry counter reaches zero. When running timed cycles a zero retry counter causes a cycle alarm; advance on empty, however, will signal the end of the cycle.
Note that the pulse retries will override the ECD parameter setting (which sets how long to wait for the sensor to cover again). When the sensor covers the software will force the dispense valve to a fixed positions depending on mode: in convey & purge mode the valve is kept closed (after a delay), in all other cases the valve is kept open.

FPO – Fill Valve Pulsing (Fill Pulse Option)

With the first digit set to 1 (1xxxx), the fill valve will pulse, opening/closing the fill valve at the beginning of a cycle.

The 2nd digit (x3xxx) sets the pulse “on time” in seconds. (default: 3 seconds)

The 3rd digit (xx1xx) sets fill valve “off time” to in seconds. (default: 1 seconds)

The last two digits (xxx00) sets the number of pulse or if set to 00 (xxx00), it will continue pulsing until the VTA sensor is covered.

ATO - Temperature Offset

DO NOT CHANGE THIS PARAMETER - ADVANCED MODE ONLY

Allows setting an offset to the set-point temperature (always positive) so that the Dryer targets a higher temperature than dialed. This offset is so the air is at the set-point temperature by the time it reaches the plastic pellets. The displayed temperature is the current temperature minus the offset. The ATO parameter has a default value of 0 degrees.

BOV - Blower Off Vacuum – inHg or mmHg

DO NOT CHANGE THIS PARAMETER - ADVANCED MODE ONLY

Setting Blower Off Vacuum parameter to a non-zero value will slightly alter the end-of-cycle shutdown sequence. Instead of turning the heater/blower off instantly when the cycle time ends, it will continue running the heater/blower while the vacuum bleeds to the pressure set in the BOV parameter. BOV defaults to 0 for all models except the 1000 lb models where it defaults to 4 inHg (102 mmHg).
3.6.5 - Changing / Saving Parameters

CHANGING PARAMETERS

Changing parameters can have an impact on the Dryer's performance. It is highly recommended that a supervisor change the default Program Mode password to protect the parameter values. Prior to making any parameter changes, make sure you understand what you are doing.

To access the internal parameters you must enter into Program Mode.

The Program Mode default password is: 22222

To change a PARAMETER, the sequence of keystrokes is as follows:

<table>
<thead>
<tr>
<th>Press:</th>
<th>Display will say:</th>
<th>EnterFiveDigit>Password</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTER</td>
<td>ENTER FIVE DIGIT</td>
<td>PASSWORD _ _ _ _</td>
<td></td>
</tr>
<tr>
<td>22222</td>
<td>TEMP=63°F v=0in</td>
<td>MODE=PROGRAM CAN=2</td>
<td></td>
</tr>
<tr>
<td>PARA</td>
<td>DRYING CYCLE TIME</td>
<td>MINUTES: DRY 00000</td>
<td></td>
</tr>
<tr>
<td>PARA</td>
<td>to walk FORWARD</td>
<td>through parameter list.</td>
<td></td>
</tr>
<tr>
<td>PARA</td>
<td>to BACK UP</td>
<td>in the parameter list.</td>
<td></td>
</tr>
</tbody>
</table>

When the PARAMETER you want is displayed, enter a new setting using the number keys. You must enter 5 digits. Use leading zeros.

Press: EXIT Display will say: TEMP=63°F v=0in MODE=PROGRAM CAN=2

Press EXIT again to return to Auto Mode.

Additional information can be found in the KEYPAD section on page 34.
SAVING PARAMETERS into “User Backup Settings”

If the changes you have made are PERMANENT, SAVE them in the “User Backup Settings” using the *23 function. Sometimes during normal operation, electrical noise or RF (Radio Frequency) noise will corrupt the processor memory. It may be necessary to do a CLEAR to fix this problem.

A “CLEAR” will clear all data from the “User Settings” (the current settings in use) and replace it with information stored in the “User Backup Settings”. So it is a good idea to have an exact copy of your User Settings stored in the backup for just such an emergency.

To copy ALL PARAMETERS into the “User Backup Settings”, the sequence of keystrokes is as follows:

<table>
<thead>
<tr>
<th>Press:</th>
<th>Display will say:</th>
</tr>
</thead>
<tbody>
<tr>
<td>#23</td>
<td>ENTER FIVE DIGIT PASSWORD _ _ _ _ _</td>
</tr>
<tr>
<td>22222</td>
<td>TEMP=63°F v=0in MODE=PROGRAM CAN=2</td>
</tr>
<tr>
<td>*23</td>
<td>SAVE USER SETTINGS</td>
</tr>
</tbody>
</table>

The current User Settings have been saved into User Backup Settings
Press EXIT again to return to Auto Mode.

With this done, all correct Parameters may be restored from User Backup Settings to User Settings at any time by doing a CLEAR. To do a CLEAR, hold the “CE” key down when turning POWER ON.
4 – Maintenance and Service

To help you identify your Dryer see: LPD Nomenclature / Order Code on page 90.

4.1 - Clean / Replace Air Filter

The air filter must be periodically cleaned or replaced.

Do not access filter while Dryer is running.

A clogged filter will result in a lower then usual heater on-time duty cycle and a delay in reaching temperature.

The partially blocked, slower moving air cannot remove heat from the heating element as effectively, and therefore the heater on time percentage is lower. A delay in temperature rise will eventually result in an alarm. Your particular processing conditions will determine how frequently this filter should be checked or cleaned.

The air filter is located inside the front door of the Series 30 models and at the base of the left-side panel on the Series 100 and 200 models. To access the air filter, unlatch the filter door and slide the filter out. Clean or replace filter as necessary.

To clean filter, knock any larger debris off the filter, then blow compressed air through the filter from the inside blowing out through the filter paper. With the filter removed, clean out the box with a vacuum.

The frequency of cleaning depends on the type of material being processed and the number of hours that the Dryer is run per shift.

Do not run the dryer without the proper filter installed. Damage to the blower may result.
4.2 - Cleaning the Vacuum Takeoff Assembly (VTA)

The Vacuum Takeoff Assembly (otherwise known as the VTA) has a hinged door for clean out. It also allows material to be emptied from a full canister. Opening the window access door will allow cleaning of this space. You can then use the empty button on the control panel to manually operate the "empty" valve, allowing material to flow into a box or bucket placed in front of the dryer.

To clean the inside of the VTA, follow this procedure:

Place a bucket or box under the material chute. Open the VTA door by turning the latch counter clockwise.
Lift the VTA door to purge material. Use a blast of compressed air and a vacuum to clean VTA chamber.

The Canister in the Dispense Station may be emptied prior to removal. This can be done by pressing the EMPTY key on the Keypad while the Dryer is in Auto Mode. The bottom valve at the “DISPENSE station” will open and dispense the material in the canister above through the VTA chamber. The empty key can be operated in Auto Mode while the door is open for cleanout.

When this is done be sure to have the VTA door open and a container is placed under the VTA chute to dispense the material into. *Be sure your container is large enough!*

To close the VTA door, press the material chute up as the door is closed. Rotate the latch clockwise to lock.
4.3 - Canister Removal / Cleaning

LPD 30, 100 and 200 Series canisters are removable for servicing / cleaning.

Canisters and surrounding parts may be hot. Use of gloves is recommended.

Canisters and surrounding parts may be sharp or present a pinching hazard. Use of gloves is recommended. Be aware of pinch hazards.

To remove and clean the canisters, follow this procedure:

Unhook the lower canister latches (100 series also has upper latches) on each side of the canister by lifting the latch up and toward you, releasing the canister.

Grip the two handles firmly and lift the canister up and away from its supports.

Rest the canister upside down on a rubber mat or piece of thick cardboard.

Do not damage the edge of the canister. The upper and lower edge of the canister must not be damaged to ensure a proper seal while drying material. Always rest the canisters on a rubber mat or thick cardboard and take care not to damage the edge of the canisters.
Canister Cleaning:

Canisters can be disassembled for full access to the interior space for complete clean out.

Set the canister UPSIDE DOWN on the floor on a rubber mat or thick cardboard. DO NOT damage the edge of the canisters. Note the flat bottom disk with holes.

WARNING

Canisters and surrounding parts may be hot. Use of gloves is recommended.

WARNING

Canisters and surrounding parts may be sharp or present a pinching hazard. Use of gloves is recommended. Be aware of pinch hazards.

Remove the disk

Using both hands, press down slightly on the spring latch (or the notched side on a LPD-30) and rotate in either direction past the retaining bolts to release.
Remove the perforated cone by gripping the pin protruding from the perforated cone and lift the cone out by tilting to one side to clear protruding hardware.

You now have full access to the inside of the canister. Do NOT remove any remaining parts. All mounting hardware has been sealed at the factory to be vacuum tight. DO NOT remove or tamper with any bolts.

To reassemble:

Install perforated cone first. Install the retaining disk. To twist disk into place, place pressure on all four engagement points while rotating the disk under the retaining bolt heads.

Stop at the notch in the spring latch (or the notch in the disk on an LPD-30) to lock in place. Use of gloves is recommended.
4.4 - Fill Hopper and Fill Valve Cleaning

While facing the front of the Dryer, remove the mounting bolt on the left side of the Hopper (nearest the center of the Dryer). See pictures to the right.

WARNING
Do Not remove both mounting bolts.

Before rotating the Hopper, close the Slide Gate at the base of the hopper (located at the lower right side of the hopper). Rotate the Fill Hopper counter-clockwise and towards the right side of the Dryer until the Fill Hopper dispense port is over the side of the dryer. Do not rotate Hopper further than necessary to dispense the material from the Fill Hopper. Use a container such as a bucket or box to capture material. Open the manual slide gate to dispense the material. Close slide gate to stop material.

Note: LPD 30, and LPD 100 models do not have the material chute.
Fill Valve Cleaning

When changing material, if is necessary to clean the fill hopper be sure to also clean the Fill Valve.

To remove the Fill Valve, the Fill Hopper must first be rotated (see instructions in previous section for Fill Hopper rotation).

After Fill Hopper has been rotated around, remove the Fill Valve and disconnect the Fill Valve pneumatic lines. Clean as necessary.

Reassemble Fill Valve and Secure Fill Hopper:

Reconnect the Fill Valve’s pneumatic lines and re-insert fill valve into the dryer.

Rotate the Fill Hopper back onto Dryer. Re-install bolt.
4.5 - Clean / Inspect the silicone disk seals

To ensure a proper canister seal, clean all 3 silicone seals located at the base of each canister with a damp cloth and a mild, non-combustible, common household cleaner.

Inspect the 3 seals for damage. Replace if necessary.

Note: Remove canisters prior or inspection and cleaning.

4.6 - Drain and purge Air Filter / Regulator

The purpose of the air filter is to remove moisture and contaminants from the air supply and protect the air components of the Dryer. The air filter must be periodically purged of moisture.

Do not supply Dryer with a lubricated air supply. Damage to Dryer may result. Use only a clean, dry, oil-free air supply.
4.7 - Adjustments

Air Pressure = Vacuum

Air pressure affects the ability to draw a high vacuum. We recommend a pressure setting of **80 PSI while the vacuum generator is running**. The gauge should continue to read this setting even when the vacuum unit is on. If it does not maintain pressure your supply line is not sized properly.

Do not supply Dryer with a lubricated air supply. Damage to Dryer may result. Use only a clean, dry, oil-free air supply.

Indexing Speed

Smoothness of the indexing depends on the proper adjustment of the exhaust flow control valves, located on the air supply to each of the three "position" cylinders. When adjusted correctly, the canister will rotate fully to the next position, but without overshoot. Each adjuster controls canister movement only when the cylinder to which it is mounted is de-energized. In other words, it controls cylinder exhaust air. All three must be adjusted to assure correct operation into each position.

These are factory set 2 full turns counterclockwise (from fully closed).

Closing Rate of All Top and Bottom Disks

The air cylinders that operate the disks above and below the vacuum station, below the heat station, and above and below the Dispense station, are all operated by ONE solenoid. There is a flow control device in the air line to slow down the closing and prevent slamming of these disks. This device is located inside the cabinet, behind the controller, accessible when the cabinet door is opened.

These are factory set 2 full turns counterclockwise (from fully closed).

Lock Cylinder Engagement Rate

The cylinder that engages the cam to lock the canisters in position, has a flow control on it to allow for smooth engagement.

It is factory set ¾ of a turn counterclockwise (from fully closed).
Correct Canister Indexing / Location

The LOCK cylinder presses a roller into a cam to locate and lock the canisters in the exact correct position. If, after locking, the canister positions are NOT correct, there is an adjustment. The roller is bolted to an arm. This arm pivots from a point near the front edge of the top disk. This pivot point is in a slotted hole. With the locking roller engaged against the cam, loosen the pivot bolt and rotate the entire canister assembly as required to the perfect position. Re-tighten the bolt. Note: Some units use a bracket with four mounting bolts and all must be loosened for adjustment.

Material Conveying Rate

When material is conveyed to the process machine, the rate at which material is picked up by the air steam is important. Too little takes too long to load, too much may block the required flow of air. This rate is adjustable. Open the door. Under the front canister there is a window to view the flow of material. Adjustment devices vary. Adjust the air flow as required.

Ambient Air / Process Air Exchange Valve

200 Series Dryers have an automatic Ambient Air Exchange Valve.

Higher horsepower blowers impart considerable heat to the process air. Temperatures may rise above the set point, even with the heater remaining off. To counter these unwanted high temperatures, it is necessary to allow some, or all, hot process air to escape to atmosphere while cooler ambient air is drawn into the blower.

If temperature exceeds set point, the valve opens to allow temperature to stabilize at a point where the heaters are cycling just enough for control.
Calibrating the Optional Hopper Fill Sensor

Location: Mounted on the Fill Hopper on top of the Dryer.

Calibration: START WITH AN EMPTY HOPPER

Adjusting sensor sensitivity:

1. The adjustment screw is located at the rear of the sensor. You will need a very small screwdriver to adjust it.

2. Empty the hopper until the sensor is uncovered.

3. Turn the screw clockwise until the LED goes OFF.

4. Then turn the screw counter-clockwise until the LED just comes ON, then turn 2 more full turns counter-clockwise.
4.8 - Check Out Procedure

If you have reason to disassemble and reassemble parts of your dryer, this procedure will confirm that all air line connections are correct.

1. Have NO MATERIAL in the hopper above the unit.

2. Place ALL switches OFF; POWER OFF.

3. Install at least one canister.

4. Connect air supply.

5. Open door and rotate the carousel by hand so that the canister or canisters rotate through all stations. There should be no interference.

 If interference is noted, then visually inspect for mechanical interference.

 No POSITION cylinders should be pulling at the carousel. The LOCK should NOT be engaged.
 The FILL valve should be closed (cylinder retracted). The CONVEY hot air valve should not be shifted.

6. Turn the POWER switch on, and go into PROGRAM mode.

7. Press the SEAL key. Confirm that all disks engage the canisters:
 a. one below the heat station.
 b. one above and one below the vacuum station.
 c. one above and one below the dispense station.

8. Press the LOCK key.
 Confirm the LOCK engages.

9. Press the FILL key.
 Confirm the valve opens, cylinder extends.

10. Press the CONVEY key.
 Confirm the air valves shift.

11. Press each POSITION key.
 When the buttons are pressed in numerical order, confirm that each advances the canisters in a Counter Clockwise direction (viewed from above) (POS1, then POS2, then POS3, then POS1, etc).
 POS1 retracts the rear cylinder. POS2 retracts the left cylinder, POS3 retracts the right cylinder. If interference is noted, then a cylinder solenoid may be plumbed backwards.
4.9 – Temperature and Pressure Verification

Should it be deemed necessary to verify the LPD’s RTD (air temperature measurement) and/or pressure sensor (vacuum level reading) this page outlines how to accomplish this. We would first like to state that “perfect” accuracy of both devices is not necessary for the machine to run properly. The manufacturer’s advertised accuracy of the RTD sensor used in the LPD Dryer is to within 1/10th of a degree and by the nature of the design, will either work or not work. The RTD should never vary in its accuracy nor can it be calibrated. With that being said, even if the temperature were to vary +/- 5 degrees Fahrenheit, most materials will complete the drying process within acceptable tolerance levels. This is not to say that the RTD will vary in the temperature reading, rather most materials dry fine within this tolerance. The integrated silicon pressure sensor, used for vacuum level readings, has a maximum error of +/-2.5% over 0º to 85º C. The pressure sensor also cannot be calibrated nor should it require calibration.

RTD Sensor Verification:
The RTD sensor is located about one inch below the screen covering the hot air inlet at the heating station (see arrow in picture at right). Place a wire type sensor probe about one inch into the center of this screen. This location will be the closest to what the RTD sensor will display on the LPD dryer. If the test will be done during a heating cycle, orient the sensor wire so that it does not interfere with the rotation of the canisters, preferably to the closest edge of the rubber seal and down under the station.

The LPD’s displayed temperature is offset lower by the ATO parameter, see page 50 for details on ATO. Observe the temperature on the LPD display and compare this to your temperature sensor taking the ATO offset into account if applicable. Note: Ambient air temperature shown in these pictures with ATO set to 0 (zero).

Pressure Sensor Verification:
The pressure sensor for measuring the vacuum level is located in the LPD controller. This sensor can be verified using the following method. A green air line runs out of the controller into the top of the LPD dryer to an NPT “Tee” fitting. The “Tee” fitting is accessible by taking the top panel off of the LPD Dryer. You can tap into this “Tee” fitting with a differential pressure gauge such as one made by SMC (part# 4300751) or a handheld pressure meter. Note: The LPD’s displayed pressure is corrected for local barometric pressure / altitude (-1 inch mercury per 1000 ft. above sea level) as where a standard pressure gauge is not.
4.10 - Control Panel Removal

The control panel is removable for service. If you have a controller problem, a complete new control panel may be installed in minutes.

1. Unplug the low voltage power connection from the box below.
2. Remove two screws to open the door.
3. Inside, unplug ribbon cable from the terminal strip board.
4. Disconnect the vacuum line (green tube) at the quick disconnect.
5. Unscrew large plastic nut from back surface; top center.
6. Tilt controller and lift slightly to remove.

4.11 – Diagnostic / Test Mode

The Low Pressure Dryer Diagnostic / Test Mode allows testing of the various inputs and outputs.

WARNING

Operating diagnostic mode can present a hazard under particular tests where pinch points may be exposed or high heat conditions are present as with the HEATER test. It is highly recommended that Diagnostics / Test Mode should be used only if instructed to do so by a Maguire LPD Technician.

To enter the DIAGNOSTIC / TEST MODE, holding down the 5 key and the blank key to the right of the 6 key, while turning the Dryer’s power on.

Release the keys when the display says:

POWER ON RESET

then will say

SELECT TEST

… scrolling tests …

Select the test number from the scrolling list:

1 KEYPAD Supplies visual feedback for keys pressed. Blank keys display the key's row and column position in the matrix.
2 DISPLAY Tests all fields in display and displays character set.
3 THUMBWHEEL Displays the thumbwheel switch settings. TOP (TEMP thumbwheel), MID (CYCLE thumbwheel), BOT (not applicable).
4 HEATER Test heater – Set the heat percent (%) using the temperature thumbwheel, then press the HEAT button to start the heat process, press HEAT again to stop.
5 VACUUM Test vacuum – Draws a vacuum.
6 CANISTER Test canister position.
7 MISC I/O Test various I/O, interactive
8 PRINTER Sends the ASCII character set to a USB Drive connected to the Dryer.
9 SEAL Draws a vacuum to test the seals.

Press EXIT to exit any test. Press EXIT again to exit Diagnostic / Test Mode.
4.12 - Control Inputs and Outputs

Inputs:

- **5 volt digital temperature signal**
 Located in the hot air inlet port directly under the heat station.

- **Material supply level sensor (24 volt)**
 Located on the side of the Vacuum Takeoff Assembly (VTA), to send a signal that there is material in the VTA.

- **Lock detection switch**
 Mounted on the locking bar to assure the cam roller has dropped into a detent, assuring full correct position after indexing.

- **Door Interlock switch**
 Mounted on the door, to stop all operation while the door is open.

- **Vacuum detection device**
 Mounted on the circuit board, with a small air line running to it.
 This provides an analog signal to the circuit board for a vacuum reading, over the full range of 0 to 30 inches vacuum.

- **Heater overheat thermal switch**
 Heater overheat is a manual reset thermal disk (opens at 293°F) mounted on the stainless steel tube that contains the heater elements. This would signal a blower failure or blocked air flow. This will break the control circuit to the solid state heater relays.

- **Receiver level sensor**
 Tells when the receiver is low, and the air flow valve must shift to convey material to the receiver.

- **Canister present signal**
 Mounted on the heat disk below the fill/heat station. When heat disk raises, a rod extends upward and contacts the canister. This forces a cylinder to move backward which operates a switch. No switch closure causes an alarm and displays (CANISTER NOT FOUND)

Operator Station inputs:

- Cycle Start
- Cycle Stop
- Mode Select - Auto/Clean
- Index
- Convey On/Off (wired in line with sensor signal)
- Alarm Silence button
- Plug for remote Receiver level sensor.
- Front Panel Inputs:
 - Keypad
 - Temperature thumbwheel switches (3 digits)
 - Cycle time thumbwheel switches (3 digits)
Outputs:

Air solenoid bank (located left of control panel):

<table>
<thead>
<tr>
<th>Location</th>
<th>Color</th>
<th>Activated by:</th>
<th>What it does:</th>
<th>Visual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>White</td>
<td>Position 1</td>
<td>Pulls the canisters into position 1.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Gray</td>
<td>Position 2</td>
<td>Pulls the canisters into position 2.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Black</td>
<td>Position 3</td>
<td>Pulls the canisters into position 3.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Green</td>
<td>Lock</td>
<td>Operates the locking roller on the position cam.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Red</td>
<td>Seal</td>
<td>Closes the 2 vacuum disks, the bottom heater disk, and raises the bottom material take off disk while lowering the top cover disk.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Blue</td>
<td>Fill</td>
<td>Shifts (opens) the valve above the Fill and Heat Station to allow filling of the canister.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Clear</td>
<td>Convey</td>
<td>Shifts the air flow valve to use the heated blower air to convey material to the process.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Orange</td>
<td>Empty</td>
<td>Opens the front canister dispense valve.</td>
<td></td>
</tr>
</tbody>
</table>

Additional outputs:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Venturi valve</td>
<td>Turns on the air to the air venturi vacuum generator.</td>
</tr>
<tr>
<td>Heater</td>
<td>We use 3 solid-state relays (each rated 25 amps) cycling them on and off every second, to control the heater.</td>
</tr>
<tr>
<td>Blower</td>
<td>We use a contacter to control the blower motor.</td>
</tr>
<tr>
<td>Check Valve</td>
<td>Opens to let air into the vacuum canister for optional purging of moist air during the cycle, and allowing air in at the end of the cycle.</td>
</tr>
</tbody>
</table>

Operator Station / Controller inputs/outputs:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Green Light</td>
<td>Cycle Start</td>
</tr>
<tr>
<td>Amber Light</td>
<td>Cycle Stop</td>
</tr>
<tr>
<td>White Light</td>
<td>Index</td>
</tr>
<tr>
<td>VFD display</td>
<td>Vacuum Fluorescent Display (VFD), 2 x 20 character lines</td>
</tr>
<tr>
<td>Strobe and Beeper</td>
<td>Alarms, visual and audible</td>
</tr>
<tr>
<td>DB9 port</td>
<td>Computer communications port</td>
</tr>
<tr>
<td>USB port</td>
<td>USB Drive port</td>
</tr>
<tr>
<td>4-pin port</td>
<td>Convey sensor port</td>
</tr>
</tbody>
</table>

"LOCK" Switch Location

The “lock” sensor switch is located in the front, on the top deck surface. It is mounted under the bar, which holds the cam roller that locks the canisters in place.

"Canister Detect" Switch Location

This switch is mounted on a white plastic pillar bolted under the heat disk below the heat station. It is visible, down low to the right rear, when the door is open. A “yellow” air line runs to it. Operation of the switch can be confirmed when the heat disk rises against a canister.
4.13 - Decommissioning and Disposal

Overall Construction

On the Series 30 models, there is no frame, all side and top panels make up the box-like structure. On the Series 100 and 200 models, the frame is comprised of a steel angle frame that is welded together.

Materials

The Dryer is made of steel parts, rubber parts, electrical parts, electronic parts, silicone parts, stainless steel parts, brass parts, Teflon tubing, and aluminum.

List below are some examples of the Dryer parts:

- **Steel Parts:**
 Frame, side panels, top deck, Vacuum Takeoff Assembly (VTA) u-channel, center shaft, cam, cylinder brackets, canister support brackets, door, top panels, shifting valve box, air filter box.

- **Rubber Parts:**
 Wheels, filter, vacuum hoses.

- **Stainless Steel Parts:**
 Canisters, vacuum disks, heater disks, Vacuum Takeoff Assembly (VTA) box and chute, canister handle brackets, upper heat disk screen

- **Brass Parts:**
 Pneumatic fittings

- **Aluminum Parts:**
 Fill hopper spinning, center tubes in canisters, upper heat plenum, lower heat disk casting, vacuum generator, air cylinders

- **Teflon Parts:**
 Air line tubing

- **Plastic Parts:**
 Vacuum Takeoff Assembly (VTA) window, canister window, level sensor window (in cabinet)

- **Electrical / Electronic Items:**
 Relay box assembly, controller assembly, pneumatic solenoid valve stack, heater assembly, door switch assembly, purge valve assembly, wiring

- **Silicone Parts:**
 Hoses, upper/lower canister disk seals, filter box lid gasket, fill valve canister cone/hood insert, fill valve o-ring, insulation jacket on canisters
5 – Troubleshooting / Software

5.1 – ALARMS – Cause and Solution

Typically problems are indicated by an alarm condition on the Dryer controller’s display with an audible alarm and a flashing strobe light. The following alarm troubleshooting chart will describe the alarm condition and possible causes and solutions.

<table>
<thead>
<tr>
<th>Alarm Display:</th>
<th>Troubleshooting:</th>
</tr>
</thead>
</table>
| *** ERROR *** CANS. DID NOT INDEX | **Problem:** Canisters failed to advance during indexing. The “lock” switch was not forced open by the movement of the canisters. This error typically means the canisters failed to move at all.

Solution: Check Air Pressure, set to 80 psi with vacuum generator engaged. Check for obstructions in cabinet. Possible stuck switch (highly unlikely). |
| *** ERROR *** CANS. DID NOT LOCK | **Problem:** Canisters failed to LOCK in place after indexing. The "lock" switch is not closed, indicating the cam disk (and canisters) did not advance fully to a correct position.

Solution: Check Air Pressure, set to 80 psi with vacuum generator engaged. Check for obstructions in cabinet. Check for stuck dispense valve. |
| *** ERROR *** VACUUM FAILURE | **Problem:** Vacuum failed to reach target (25 inches within 90 seconds), or unable to maintain target vacuum. Controlled by the vacuum sensor in the controller.

Solution: Check Air Pressure, set to 80 psi with vacuum generator engaged (air pressure possibly too high or too low). Check for contaminated, dirty or damaged canister seal located at the base of the vacuum station. Check for damaged or distorted edges on the canisters (top and bottom edge). If only one canister fails to hold a vacuum, check the top and bottom edges of that canister. Check that each canister is properly secured in the “Canister Hanger Assembly”. |
| *** ERROR *** NO HEAT | **Problem:** Sufficient heat rise was not detected within time specified by the NHA parameter. Controlled by the "temperature" sensor. This error also occurs if target temperature is not maintained.

Solution: Check for clogged air filter. Check for open (tripped) heater circuit breaker. Possible defective temperature sensor. Possible defective heater. Check that blower rotation is not rotating backwards, indicating incorrect wiring of blower. |
<table>
<thead>
<tr>
<th>Error Type</th>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conveyor Error</td>
<td>Receiver did not satisfy the level sensor on the last attempt. Controlled by the receiver level sensor.</td>
<td>Check for proper receiver operation. Check for proper receiver vacuum. Check receiver sensor, calibrate if necessary. Possible filter clogged. Possible filter box cover plate not closed properly.</td>
</tr>
<tr>
<td>Target Temp Too High</td>
<td>The Thumbwheel switch setting exceeds the maximum allowable temperature as defined by the MAX parameter.</td>
<td>Re-adjust Temperature Thumbwheel. Verify MAX parameter value.</td>
</tr>
<tr>
<td>Target Temp Too Low</td>
<td>The target temperature is set below freezing (32F or 0C).</td>
<td>Re-adjust Temperature Thumbwheel.</td>
</tr>
<tr>
<td>Canister Not Found</td>
<td>There is NO canister under the fill valve, or the bottom disk is missing in the canister. Controlled by the safety switch under the heat station.</td>
<td>Check that canisters are properly installed. Check that bottom disk is installed in all canisters. Check Air Pressure, set to 80 psi with vacuum generator engaged.</td>
</tr>
<tr>
<td>Cycle Time Error</td>
<td>The level sensor under the dispense (front) canister is uncovered (canister empty) before the cycle time is complete.</td>
<td>Possible material demand exceeds Cycle Time. Re-adjust to a shorter cycle time or reduce material demand.</td>
</tr>
<tr>
<td>Problem No Heat Rise</td>
<td>There has been a drop in temperature in spite of a request by the software to increase the temperature and sufficient time for the increase to take place. Controlled by the HFT parameter.</td>
<td>Check for clogged air filter. Check for open (tripped) heater circuit breaker. Possible defective temperature sensor. Possible defective heater.</td>
</tr>
<tr>
<td>Fail Safe Alarm Error</td>
<td>Potential overheat condition in cabinet causing one or more heat snap disc(s) open.</td>
<td>Possible blower overload condition. Check for clogged air filter. Check for open (tripped) blower circuit breaker. Check integrity of internal heater hoses (heat blowing into cabinet).</td>
</tr>
</tbody>
</table>
*** ERROR ***
BAD TEMP. SENSOR

Problem: The temperature sensor located at the base of the Fill and Heat Station is not reporting temperature data. The Display will read 999.

Solution: Check Temperature sensor located at the base of the Fill and Heat Station.

*** ERROR ***
TEMP ABOVE SET POINT

Problem: The temperature of the material in the canister exceeds the Temperature Thumbwheel setting.

Solution: Contact Maguire technical support.

NO TARGET TEMP SET!

Problem: The Target Temperature Thumbwheel is set to 000.

Solution: Reset Target Temperature thumbwheel.

Note: If Target Temperature (TEMP) thumbwheel and Cycle Time (CYCLE) thumbwheel are both set to 000, then the Dryer will run and cycle without heat.

CYCLE TIME NOT SET!

Problem: The Cycle Time Thumbwheel is set to 000.

Solution: Reset Cycle Time thumbwheel.

Note: If Target Temperature (TEMP) thumbwheel and Cycle Time (CYCLE) thumbwheel are both set to 000, then the Dryer will run and cycle without heat.

*** PROBLEM ***
FATAL ERROR

Problem: Internal software failure. Occurs only if there is a failure reading/writing the internal non-volatile memory.

Solution: Power off Dryer and power back on. If problem persists, contact Maguire technical support.
5.2 - Possible Service Issues

5.2.1 – Loss of Vacuum

If ALL canisters fail to hold vacuum:

1. Confirm adequate air pressure, set 80 PSI when vacuum generator is on.

2. Check the rubber seals on the top and bottom disks.
 Wipe clean with a mild household cleaner if they are contaminated by dust and powder, etc. Check for deep cuts.

3. Confirm the vacuum disks are loose and can tilt slightly so they properly self align to the canister surface.

4. Check the air solenoid.
 Air should be blowing out the vacuum venturi exhaust port.

5. Check the Vacuum Generator.
 With canisters removed, reach in and cover the vacuum port in the underside of the top vacuum disk. The gauge should go immediately to full vacuum. If it is slow to reach full vacuum the vacuum generator may be contaminated from oil in the compressed air mixing with dust drawn from the canister. If your air is oily, add an oil separator.

6. Check the Purge Valve.
 On Dryers produced before 2nd quarter 2005, remove and plug the purge line to confirm that a leaking purge valve is not the source of the problem.

If only ONE canister fails to hold vacuum:

1. Inspect the contact edges of the canisters for damage.

2. Confirm all through-bolt connections are tight.

3. Confirm the canister seam is air tight. Add tape along this seam to check.

5.2.2 – Damaged Vacuum Disks

Over time, the vacuum rubber seals may become grooved or loose resiliency and not seal well. Our experience with these gaskets is limited to about 3 years. If you have problems, they can be easily replaced. The vacuum disks, when installed properly, are free to move slightly for self-alignment.
5.2.3 – Heater Safety Switch Tripped

The heater is controlled by software turning power on and off every second. The percentage of ON time, displayed during operation, gives some indication as to how hot the material has become. As material comes up to temperature, the percentage ON time becomes lower. The displayed temperature is the inlet air as it enters the heating canister. If the system does not show an increasing temperature within a set time after cycle start, an air flow or heater problem is indicated, and the system shuts down.

There is one high temperature SAFETY CUT OFF switch. One is mounted directly to the heater element cartridge. If the blower fails or the air stream is blocked, overheating of the heater element cartridge will trip this safety switch at 300 degrees F (150C). The switch will break the control power to the heater relays, which will result in a FAIL SAFE ALARM condition. (See Alarm Conditions on page 81). The switch is MANUAL reset only, and you may have to remove the rear cover to access this. We do this so you will then be able to inspect all internal parts closely. The switch should never trip. If it does, something else has failed.

5.2.4 – Filter Clogged

A clogged filter will result in a lower than usual heater on-time duty cycle and a delay in reaching temperature. The partially blocked, slower moving air cannot remove heat from the heating element as effectively, and therefore the heater on time percentage is lower. A delay in temperature rise will eventually result in an alarm.

Your particular processing conditions will determine how frequently this filter should be checked or cleaned.

See Clean / Replace Air Filter on page 63.
5.3 – Print Outputs

As an aid to monitoring dryer performance and documenting operation, a printout of dryer operation information may be obtained for each cycle. This is done by activating the printer function and inserting a USB Drive into the USB port.

A typical printout for each cycle looks like this:

08/23/2007 ID: 000 TARGET: 160 F CYCLE: 020 m FILL: 1 CAN: 1
02:17:19 PM 0:00 TEMP: 133.7 F HEAT: 26% VAC: 5 in Hg.
02:17:39 PM 0:00 TEMP: 143.7 F HEAT: 29% VAC: 17 in Hg.
02:17:59 PM 0:00 TEMP: 153.6 F HEAT: 29% VAC: 21 in Hg.
02:18:19 PM 0:00 TEMP: 157.8 F HEAT: 29% VAC: 24 in Hg.
02:18:19 PM 0:00 TEMP: 157.8 F HEAT: 29% VAC: 24 in Hg.
02:18:28 PM 0:08 TEMP: 159.0 F HEAT: 29% VAC: 25 in Hg.
02:19:33 PM 1:05 TEMP: 160.1 F HEAT: 23% VAC: 28 OFF 2:23
02:21:22 PM 2:54 TEMP: 160.1 F HEAT: 23% VAC: 25 ON 6:23
02:23:28 PM 5:00 TEMP: 160.1 F HEAT: 23% VAC: 28 in Hg.
02:28:28 PM 10:00 TEMP: 160.1 F HEAT: 23% VAC: 28 in Hg.

Fill = 1 means a fill will be performed, Fill = 0 means no fill

The first line is a "header" line for each cycle:

<table>
<thead>
<tr>
<th>Date</th>
<th>Unit ID number</th>
<th>Thumbwheel settings, Fill Valve, Canister at Dispense station</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/23/2007</td>
<td>ID: 000</td>
<td>TARGET: 160 F CYCLE: 020 m FILL: 1 CAN: 1</td>
</tr>
</tbody>
</table>

The header is followed by lines of information that print as often as you specify in the frequency entry.

Each line includes:

<table>
<thead>
<tr>
<th>Time</th>
<th>accumulated cycle time</th>
<th>current temperature</th>
<th>heater duty cycle</th>
<th>current vacuum</th>
</tr>
</thead>
</table>

In addition, these events will also print out a line of information.

- Main power on
- Convey on
- Door open pause
- Stop button pressed
- Vacuum generator on/off
- Alarm conditions

Notes about printing to a USB drive

When saving printout information to a USB drive, the USB drive must contain a folder named maguire and within the folder, a file labeled PRINTER.TXT must be present. It is this file, PRINTER.TXT that printout functions appended to. Also note that every time a print occurs to the file on the USB drive, the data is appended to the end of the file PRINTER.TXT and does not overwrite existing data within the file.
5.4 – Material not drying correctly – Feedback Form

Drying is accomplished when all material reaches the proper temperature, and is then placed under sufficient vacuum for a sufficient period of time.

Measurement of moisture content of material, both prior to and after drying, is accomplished by using a moisture analyzer such as one manufactured by Arizona Instruments.

If you are not obtaining the results you want or if you would like us to test your material to determine the optimal drying cycle time, please provide us with the following information below.

A sample of your material may be required for our own testing. We would need at least 35 pounds.

<table>
<thead>
<tr>
<th>General material type: (PET, NYLON, etc.):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer:</td>
</tr>
<tr>
<td>Material designation:</td>
</tr>
<tr>
<td>Desiccant dryer recommended drying time:</td>
</tr>
<tr>
<td>Target moisture level for processing:</td>
</tr>
<tr>
<td>LPD Temperature:</td>
</tr>
<tr>
<td>LPD Cycle time:</td>
</tr>
<tr>
<td>Vacuum reading reached:</td>
</tr>
<tr>
<td>Moisture content before drying:</td>
</tr>
</tbody>
</table>

Moisture content obtained after drying:

Other comments:
5.5 - Dryer Software – Backup, Restore, Factory Reset

Locations of stored Dryer settings and their purpose

There are 3 memory areas where Dryer settings are stored:

1. **User Settings** - The current settings in use. When you make parameter changes and/or enable features, the changes (if any) are recorded into the user-settings when you exit PROGRAM or MANUAL mode. When changes are made to User Settings, the changes are stored in EEPROM memory so that they are not lost when the Dryer is powered off.

2. **User Backup Settings** – The area in memory where User Settings are backed up into when the *23 function is used. If User Setting were never backed up using *23 then Factory default settings reside in this memory location. “User Backup Settings” can be restored into “User Settings” using the *32 function.

3. **Factory Default Settings** - The area in memory that holds the Dryer model's factory default settings. The Factory Default Settings are hard-coded default settings for each model. Factory Default Setting can be restored using the *12 function or by doing a CLEAR ALL.

For information on using *12, *23 and *32, see Star Functions on page 37.

"CLEAR" Routine

The “CLEAR” routine will copy “User Backup Settings” into “User Settings”. If “User Backup Settings” were not intentionally saved earlier (using *23), then the CLEAR routine is essentially restoring Factory Default Settings. The Clear routine is the same as using the *32 function.

To execute a "CLEAR", hold down the “CE” key while turning POWER ON, then release the “CE” key. When done correctly, the display will say *** CLEAR ***

“CLEAR ALL” Routine

The “CLEAR ALL” routine sets both current “User Settings” and “User Backup Settings” to the Dryer’s model-specific default settings (the hard-coded values contained within the software itself). However, a CLEAR ALL will preserve the most important user-defined settings, which are: manual mode and program mode passwords, language configuration, calibration points, and temperature format.

There are only TWO times when you want to do a CLEAR ALL.

1. When new software has been installed. Information may reside in memory locations that do not match the new program. CLEAR ALL fixes this.

2. When all else fails.
 CLEAR ALL will sometimes fix problems that the simple CLEAR routine misses.

To execute a "CLEAR ALL", hold down the left (DISP), middle (not identified, black), and right (EXIT) keys on the top row while turning POWER ON, then release the keys. When done correctly, the display will say *** CLEAR ALL***
6 – General Information

6.1 – LPD Model Specification Chart

LPD Series 30, 100, 200 models only. The LPD Series 1000 is not shown in this chart. Please contact Maguire Products for more information. This information may change as development changes occur.

<table>
<thead>
<tr>
<th>Regional Specifications</th>
<th>LPD 30</th>
<th>LPD 100</th>
<th>LPD 200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard version max.</td>
<td>350°F</td>
<td>180°C</td>
<td>350°F</td>
</tr>
<tr>
<td>Throughput</td>
<td>30 lb/h</td>
<td>15 kg/h</td>
<td>100 lb/h</td>
</tr>
<tr>
<td>Canister volume</td>
<td>0.32 cu ft</td>
<td>9 l</td>
<td>1.1 cu ft</td>
</tr>
<tr>
<td>Empty weight</td>
<td>550 lb</td>
<td>250 kg</td>
<td>730 lb</td>
</tr>
<tr>
<td>Packing weight</td>
<td>620 lb</td>
<td>280 kg</td>
<td>800 lb</td>
</tr>
<tr>
<td>Packing dim. (L x W x H)</td>
<td>40”x35”x75”</td>
<td>100x90x190 cm</td>
<td>40”x35”x85”</td>
</tr>
<tr>
<td>Heater element</td>
<td>3 kW / 13A</td>
<td>3 kW / 13 A</td>
<td>5 kW / 22 A</td>
</tr>
<tr>
<td>Blower</td>
<td>0.5 hp / 2.5 A</td>
<td>0.37 kW / 2.5 A</td>
<td>2.5 hp / 6.2 A</td>
</tr>
<tr>
<td>Total Power Supply</td>
<td>480V/3Ph/60Hz</td>
<td>400V/3Ph/50Hz</td>
<td>480V/3Ph/60Hz</td>
</tr>
<tr>
<td></td>
<td>3.47 kW / 16 A</td>
<td>3.47 kW / 16 A</td>
<td>6.96 kW / 20 A</td>
</tr>
<tr>
<td>Compressed air requirement</td>
<td>80 psi</td>
<td>7 bar</td>
<td>80 psi</td>
</tr>
<tr>
<td>Compressed usage</td>
<td>0.4 cfm</td>
<td>0.7 m³/h</td>
<td>2 cfm</td>
</tr>
<tr>
<td>Footprint Dimensions - inches</td>
<td>16 x 16</td>
<td>16 x 16</td>
<td>28 x 28</td>
</tr>
</tbody>
</table>

*US voltage: 480, Europe / Asia voltage: 400

Throughputs listed here are nominal. Actual throughput depends on the material and drying requirements.
6.2 - LPD Nomenclature / Order Code

The Dryer identification plate is located inside the front door of the Dryer and mounted to the top, left side of the Dryer frame. This plate has specific information about your Dryer including: Product Classification / Dryer Size / Heat Option / Configuration / Voltage. The following information will help you decipher what is found on the identification plate.

YEAR: The year Dryer was manufactured.

MODEL: See below for descriptions of each field in the model number.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPD</td>
<td>Low Pressure Dryer</td>
</tr>
<tr>
<td>.3</td>
<td>Series LPD-30</td>
</tr>
<tr>
<td>1</td>
<td>Series LPD-100</td>
</tr>
<tr>
<td>2</td>
<td>Series LPD-200</td>
</tr>
<tr>
<td>10</td>
<td>Series LPD-1000</td>
</tr>
<tr>
<td>S</td>
<td>Standard</td>
</tr>
<tr>
<td>H</td>
<td>High Heat</td>
</tr>
<tr>
<td>D</td>
<td>Domestic</td>
</tr>
<tr>
<td>E</td>
<td>European</td>
</tr>
<tr>
<td>C</td>
<td>Canadian</td>
</tr>
<tr>
<td>A</td>
<td>Asia</td>
</tr>
<tr>
<td>2</td>
<td>230 volt, 3 Phase, 60 Hz</td>
</tr>
<tr>
<td>4</td>
<td>400 volt, 3 Phase, 50 Hz</td>
</tr>
<tr>
<td>5</td>
<td>575 volt, 3 Phase, 60 Hz</td>
</tr>
<tr>
<td>8</td>
<td>480 volt, 3 Phase, 60 Hz</td>
</tr>
</tbody>
</table>

Example: LPD.3HD5 LPD-30, High Heat, Domestic, 575 volt, 3 Phase, 60 Hz

SER #: Unique *Serial Number* of Dryer – *Dryer Version*

AMP: Amperage rating of Dryer

HZ: Hertz requirements.

MOD: not used

- 230 volt, 3 phase, 60 Hz Domestic, Canada, Asia
- 400 volt, 3 phase, 50 Hz European, Asia
- 480 volt, 3 phase, 60 Hz Domestic, Canada, Asia
- 575 volt, 3 phase, 60 Hz Canada
6.3 - Features

You have purchased the most innovative dryer to be made available to the plastics industry in over 50 years (at least that's what we think). This is a dryer that does not use dry air to dry material. Instead, it uses reduced pressure (more commonly called vacuum) to lower the boiling point of water, thereby causing all moisture to rapidly "boil" off at temperatures well below the normal boiling point of water.

Here is why this dryer is so much better:

1. The capital cost of this technology is comparable to a desiccant dryer.

2. Operating cost is LESS THEN HALF that of a desiccant dryer and in many cases reduced by as much as 80 percent.

3. Your "Monday morning" start up time is cut from 4 hours to under an hour.

4. Your material change over time is reduced to ZERO if you plan ahead about one hour. Color changes can be made "On the fly" with NO lost time.

5. The routine desiccant maintenance associated with desiccant dryers is eliminated. Our dryer has no "routine" maintenance items.

6. For those who sometimes forget to plan ahead, your unused inventory of blended material is 40 minutes, not 4 hours.

7. Plastics often loose physical properties when exposed to high heat for extended periods. Our dryer dramatically shortens this heat time, minimizing or eliminating these problems.

We did not invent vacuum drying.

But...
We did invent the multi stage process used in our LPD dryers. We are the first to bring Vacuum drying technology to the plastics industry in a package that is affordable, reliable, and simple to operate.

We hope you are as proud as we are to be a part of this revolution in drying technology.

Note to our Competitors:

Our would-be competitors will, no doubt, be among the first to read this manual. We wish to tell them that all inventive aspects of this new technology are subject to domestic and international patents either issued or now pending. We intend to aggressively pursue our rights under these patents at such time when they issue.
6.4 - Our Design Philosophy

While we do have competitors, our equipment is different. Here is why.

When we design equipment, we have FIVE objectives. All are important, but not all are obvious. In their order of importance they are:

1. **FUNCTION:**

 This is very simple; the customer has certain requirements, and we must meet these Requirements. This is the most obvious consideration, the first consideration, and the one consideration that can most easily be tested and compared.

2. **RELIABILITY:**

 This is not so easy to test. Time and experience is the only way to be sure equipment will last a long time, require little or no maintenance, and provide maximum "up" time. The true cost of equipment can be much higher when maintenance and lost production time are added in.

3. **SERVICEABILITY:**

 When it breaks, how easily can it be serviced. Can your employees do it, do it quickly, and do it right? Is skilled and costly outside service required? Are parts readily available? How much time will it take to get it running again.

4. **EASE OF USE:**

 What percentage of your employees will be able to run this equipment. All of them? Only the best of them? Maybe only the engineers in the office? How about the night shift? Ease of use is very important. Production suffers when equipment is difficult to understand and operate.

5. **PRICE:**

 Very important. Especially to us. Customers often consider this the most important item and it is easy to compare.

Our competitors often get number 1 and 5 right, "Function" and "Price". On the other hand "Reliability", "Serviceability", and "Ease of use" are difficult to measure, hard to value, and hard to use as selling points. They are also much more difficult features to achieve in the design. We take these three objectives very seriously, incorporating them into product from the very beginning of the design process. Lost production time, while difficult to predict, is very expensive. For that reason we place these design goals ahead of cost. In the long run our customers are better served by this philosophy and, therefore, so are we.
6.5 - Theory of Operation / Performance

THEORY OF VACUUM DRYING

Water boils at 212 F (100 C) degrees. However, this is only true at sea level, which is to say at standard atmospheric pressure, which is 14.7 pounds/sq in (1 bar), also expressed as 29.92 inches (760mm) of Mercury (Hg).

At lower pressures the boiling point of water is reduced.

Standard atmospheric pressure can support a column of Mercury 29.92 inches (760mm) high. If we pull a perfect vacuum above a column of Mercury, the mercury will rise in that column 29.92 inches and, for that reason, the number we can expect to read on the vacuum gauge, at full vacuum, is 29.92 inches. Lesser vacuums read lower numbers. No vacuum reads zero.

When water is subjected to a vacuum level of 25 inches (635mm) of mercury, it will boil at 133F (56C) degrees. When plastic pellets are heated to 160F (71C) degrees, or greater, and subjected to a vacuum of 25 inches (635mm), the water vapor within wants very much to boil. This increased molecular activity within the pellet and the greatly reduced pressure surrounding the pellet drives the moisture from the pellet in a remarkably short time. This then is the reason for the remarkable short drying time of a vacuum dryer.

PERFORMANCE

The true measure of a dryer’s performance is determined by the moisture content of the resin after the dryer has done its job. Resin moisture content, however, is not easily measured, so dryer manufacturers use other criteria to assure performance.

Conventional “desiccant” dryers use DEW POINT as a measure of performance. This is a measure of the dryness of the air passing over the resin, but not the dryness of the resin itself.

For example, for a particular resin, experience may tell us that 180F (82C) degree air dried to minus 40 dew point, and passed over the material for 4 hours, is sufficient to reduce the moisture content of that resin to the required level of dryness.

Since our LPD dryer does NOT use dry air, we have no “dew point” to measure.

In our case, for the same resin, experience tells us that a vacuum of 25 inches (635mm) applied for 20 minutes to material that has been heated to 180F (82C) degrees, is sufficient to reduce the moisture content of that same resin to the correct level of dryness.

Therefore, just as desiccant dryers assure dry material by measuring temperature and DEW POINT over time, we assure dry material by measuring temperature and VACUUM over time.

When we assure that a certain temperature has been reached and a certain vacuum level achieved for a correct length of time, we can then be assured the material is dry.

You may visually assess performance by monitoring temperature and vacuum levels yourself. Of course, the final test is in the quality of the product you manufacture. We welcome your comments and observations.
6.6 - Warranty

MAGGUIRE PRODUCTS offers THE MOST COMPREHENSIVE WARRANTY in the plastics auxiliary equipment industry. We warrant each MAGUIRE LPD DRYER manufactured by us to be free from defects in material and workmanship under normal use and service; excluding only those items listed below as ‘excluded items’; our obligation under this warranty being limited to making good at our factory any Dryer which shall, within FIVE (5) YEARS after delivery to the original purchaser, be RETURNED intact to us, transportation charges PREPAID, and which our examination shall disclose to our satisfaction to have been thus defective; this warranty being expressly in lieu of all other warranties expressed or implied and of all other obligations or liabilities on our part, and MAGUIRE PRODUCTS neither assumes nor authorizes any other persons to assume for it any other liability in connection with the sale of its Dryers.

This warranty shall not apply to equipment repaired or altered outside MAGUIRE PRODUCTS INC. factory, unless such repair or alteration was, in our judgment, not responsible for the failure; nor which has been subject to misuse, negligence or accident, incorrect wiring by others, or installation or use not in accord with instructions furnished by Maguire Products, Inc.

Our liability under this warranty will extend only to equipment that is returned to our factory in Aston, Pennsylvania, PREPAID.

Please note that we always strive to satisfy our customers in whatever manner is deemed most expedient to overcome any problems they may have in connection with our equipment.

EXCLUDED ITEMS:

The ability of the canisters to hold vacuum will be compromised if the vacuum seal edge is damaged from mishandling. We do not warranty canisters damaged from improper handling. We do, however, warranty the seals.

DISCLAIMER - PRODUCTION of FAULTY PRODUCT

This dryer is of a new design. We have had excellent results in all tests performed to date, but we HAVE NOT tested every material available to the plastics industry. We have not anticipated all possible materials, processing conditions, and requirements. We are not certain that our equipment will perform properly in all instances. You must observe and verify the performance level of this equipment in your plant as part of your overall manufacturing process. You must verify to your own satisfaction that this level of performance meets your requirements. We CAN NOT be responsible for losses due to product not dried correctly, even when due to equipment malfunction or design incorrect for your requirements; and/or any consequential losses due to our equipment not drying material to your requirements.

We will only be responsible to correct, repair, replace, or accept return for full refund, our equipment if it fails to perform as designed, or we have inadvertently misrepresented our equipment for your application. If for any reason this disclaimer is not acceptable, we will accept return of the equipment for full refund, including freight costs both ways.
6.7 – LPD wiring Diagram and Supplements

This section contains wiring diagrams for:

- LPD-30 240 VAC 3 Ø 60 Hz
- LPD-30 400 VAC 3 Ø 50 Hz
- LPD-30 480 VAC 3 Ø 60 Hz
- LPD-30 575 VAC 3 Ø 60 Hz

- LPD-100 240 VAC 3 Ø 60 Hz
- LPD-100 400 VAC 3 Ø 50 Hz
- LPD-100 480 VAC 3 Ø 60 Hz
- LPD-100 575 VAC 3 Ø 60 Hz

- LPD-200 240 VAC 3 Ø 60 Hz
- LPD-200 400 VAC 3 Ø 60 Hz
- LPD-200 480 VAC 3 Ø 60 Hz
- LPD-200 575 VAC 3 Ø 60 Hz

- LPD Wiring Diagram Terminal Board, LPD 30, 100, 200

- Exploded View and Parts List

- LPD 30, 100, 200 Dimensional Drawings

- ADR-1, ADR-4 Diagrams

- LPD-30 Pneumatic Diagram
- LPD-100 Pneumatic Diagram
- LPD-200 Pneumatic Diagram
LPD-30 240 VAC 3 Ø 60 Hz
LPD-30 (575 VAC, 3Ø, 60 Hz)
LPD-200 480 VAC 3 Ø 60 Hz

[Diagram of LPD Dryer® LPD-200 480 VAC 3 Ø 60 Hz with labels and connections]
6.7 - Exploded View and Parts List

LPD 100 / 200 Main Assemblies
LPD 100 / 200 Main Assemblies
Parts List LPD-100 / 200 exploded views

<table>
<thead>
<tr>
<th>Item</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>QTY.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>as7100</td>
<td>Frame Assembly, LPD-100</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>as7103</td>
<td>Upper Mounting Plate Assembly, LPD-100/200</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>as7104</td>
<td>Lower Bearing Channel Assembly, LPD-100</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>as7114</td>
<td>Center Shaft Assembly, LPD-100</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>as7121</td>
<td>Fill Valve Assembly, LPD-100</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>as7125</td>
<td>Canister Assembly, LPD-100</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>as7145</td>
<td>Air Filter Box Assembly, LPD-100/200</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>as7155</td>
<td>Enclosure Assembly, LPD-100, Top, Right</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>as7156</td>
<td>Enclosure, Top Left, LPD-100</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>as7157</td>
<td>Enclosure Assembly, Upper Right Side</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>as7157-B</td>
<td>Enclosure, Back, Upper, LPD-100</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>as7158</td>
<td>Enclosure, Left Side, Lower, LPD-100</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>as7158-T</td>
<td>Enclosure Assembly, Left, Upper, w/ Controller</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>as7159</td>
<td>Front Door Assembly, LPD-100</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>as7161</td>
<td>Enclosure, Right Side, Lower, LPD-100</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>as7161-B</td>
<td>Enclosure, Back, Lower, LPD-100</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>as7172</td>
<td>Vacuum Take-off Assembly ("VTA"), LPD-100/200</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>as7182</td>
<td>Disk Mount Channel Assembly, VTA, LPD-100</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>as7190</td>
<td>Surge Hopper Assembly, LPD-100</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>as71BLD</td>
<td>Regenerative Blower Assembly, LPD-100</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>asH5-2</td>
<td>Heater, Assembly 5000W, 240/480V, 1 phase, LPD</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>asH5-100</td>
<td>Heater Mount Hardware, LPD-100</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>thfs-32-1</td>
<td>Hose, Silicone, 2", Shifting Valve to Upper Casting</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>thfs-32-2</td>
<td>Hose, Silicone, 2", Filter to Blower</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>thfs-32-3</td>
<td>Hose, Silicone, 2", Blower to Heater</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>thfs-32-4</td>
<td>Hose, Silicone, 2", Heater to Heat Casting</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>thfs-32-5</td>
<td>Hose, Silicone, 1½", Heat Casting to VTA</td>
<td>1</td>
</tr>
</tbody>
</table>
LPD Dryer®

Maguire Products, Inc.

Low-Pressure Resin Dryer
100 #/hr

LPD-100

CGC
5/22/02
LPD Dryer®

Low-Pressure Resin Dryer
200 #/hr

Model #: LPD-200

Drawn by: CGC
Date Drawn: 6/21/04

Maguire Products, Inc.

Edition: November 5, 2010
6.8 – ADR-1, ADR-4 Diagrams

ADR-1 Dimension Diagram

[Diagram showing dimensions and parts of ADR-1, including:
- Ø2 Vacuum Connection
- Ø1 1/2 Mat’l Inlet
- Receiver Body Ø3 1/2 Polycarb
- "Flapper" Valve
- Level Sensor
- Steel Base Frame
- Base may be drilled to match process throat]

Model ADR-1
1# Receiver, Throat-Mount, with Flapper

[Technical specifications and details for Model ADR-1]
LPD-100 Pneumatic Diagram (2 of 2)

Air Cylinders:

- A: index – position 1
- B: index – position 2
- C: index – position 3
- D: lock
- E: upper vacuum disk
- F: fill valve
- G: conister present switch
- H: conister dump
- I: vacuum take-off tray (convey)
- J: vacuum shifting valve (recirc)
- K: lower vacuum disk
- L: lower heat disk
- M: upper heat plenum
- N: lower heat disk
- O: not air shifting valve
LPD Dryer® LPD-200 Pneumatic Diagram (2 of 2)

- R: hot air shifting valve
- Q: container present switch
- P: lower heat disk
- N: lower vacuum disk
- M: vacuum shifting valve (reverse)
- L: vacuum shifting valve (convey)
- K: vacuum take-off tray
- J: dump station cover disk
- H: container dump
- G: upper heat plenum
- F: fill valve
- E: upper vacuum disk
- D: lock
- C: index - position 3
- B: index - position 2
- A: index - position 1

Air Cylinders: LPD-200 Pneumatic Circuit (lower) page 2 of 2
6.10 - Technical Support and Contact Information

Maguire Products Inc.
11 Crozerville Road
Aston, PA 19014
Tel: 610.459.4300
Fax: 610.459.2700
Email: info@maguire.com
Web: www.maguire.com

Maguire Europe
Tame Park
Tamworth
Staffordshire
B775DY
UK
Tel: + 44 1827 265 850
Fax: + 44 1827 265 855
Email: info@maguire-europe.com

Maguire Products Asia PTE LTD
Main Office
15 Changi North Street 1
#01-15, I-Lofts
Singapore 498765
Tel: 65 6848-7117
Fax: 65 6542-8577
E-mail: magasia@maguire-products.com.sg

Maguire Italy
Via Zancanaro 40
35020 Vigorovea (PD)
Tel: +39 049 970 54 29
Fax: +39 049 971 18 38
Email: info@maguire-italia.it